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Abstract— This paper presents a neural-network based adap-
tive feedback control structure to regulate the velocity of 3D
bipedal robots under dynamics uncertainties. Existing Hy-
brid Zero Dynamics (HZD)-based controllers regulate velocity
through the implementation of heuristic regulators that do not
consider model and environmental uncertainties, which may
significantly affect the tracking performance of the controllers.
In this paper, we address the uncertainties in the robot
dynamics from the perspective of the reduced dimensional
representation of virtual constraints and propose the integration
of an adaptive neural network-based controller to regulate the
robot velocity in the presence of model parameter uncertainties.
The proposed approach yields improved tracking performance
under dynamics uncertainties. The shallow adaptive neural
network used in this paper does not require training a priori
and has the potential to be implemented on the real-time robotic
controller. A comparative simulation study of a 3D Cassie
robot is presented to illustrate the performance of the proposed
approach under various scenarios.

I. INTRODUCTION

Model-based controllers for 3D walking robots have re-
ceived considerable attention from the robotics community
due to their ability to take full advantage of the natural
hybrid dynamics to achieve dynamic locomotion. Existing
approaches, however, may fail to stabilize the robot or accu-
rately track the desired behaviors under model uncertainties.
Parameters that can significantly affect system dynamics
include the torso’s mass, torso’s center of mass position, to
name a few. On a real robot, these situations may occur
when mounting additional equipment in the robot, adding
a temporal load, or could be the result of wearing out of
mechanical parts like joints or linkages due to the continuous
usage of the robot.

Another important topic in dynamic locomotion is the
velocity regulation of the walking robots. Accurate and
stable velocity tracking is critical in applications of motion
planning, object tracking, and human-robot interactions. For
instance, an accompanying robot walking next to a person
needs to regulate its velocity to maintain a close distance to
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Fig. 1: Cassie walking on uneven terrain in simulation.

that person. Different methods have been proposed to address
the velocity tracking problem through feedback controllers
based on classical control techniques [1]–[5], and more
recently based on various machine learning methods [6], [7].
However, these controllers do not take the uncertainties in
the robot dynamics into consideration, resulting in notice-
ably compromised tracking performance in the presence of
changes in model properties. For example, in [4], the authors
showed that changing mass and inertia parameters by ±20%
results in significant velocity tracking errors.

To understand and simplify the effect of model uncertain-
ties for the stability and performance of bipedal locomotion,
researchers have developed bio-inspired heuristic regulators
to enhance the rate of convergence to the desired stable limit
cycle [8]. In particular, [8] showed that the convergence of
the nominal reference gait to the cyclic gait regime in planar
bipedal robots could be accelerated via feedback regulators
on top of the nominal trajectory tracking controllers by vary-
ing the torso inclination and the step length. This method is
in line with the biomechanical approach for keeping stability
while walking: when a person is walking and experiences a
disturbance, it is a natural reaction to compensate by simply
bending the torso or moving their leg [9], [10].

These findings have been extended to 3D bipedal robots by
decoupling the motion of the robot into the longitudinal and
lateral planes and applying the foot placement regulator—
which varies the step length in response to the robot walking
velocity—to track velocity in both directions [2], [11]. These
heuristically designed regulators often require intensive man-
ual tuning of feedback gains and yield noticeable steady-state
tracking errors of velocity when there is a significant change
in model parameters.

Recently, several results have addressed the problem of
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dynamics uncertainty in bipedal robots using adaptive control
from different points of view. In [12], the authors present a
strategy for the non-collocated adaptive control of under-
actuated mechanical systems by introducing the concept of
virtual control and adaptive virtual constraints to produce
stable limit walking cycles for a two-link and three-link
robots. However, these results are applied only to planar
robots, and its extension to 3D complex robots could be
limited by the high complexity of their mathematical models.

In this work, we are specifically interested in addressing
uncertainty in the robot dynamics and its effect on the robot’s
walking speeds. Therefore, we attempt to provide a general
framework to stabilize the robot’s walking limit cycle while
tracking a desired average walking speed by employing
adaptive neural network-based controllers. Inspired by the
effective results of neural network controllers in the adaptive
control of robot manipulators, we propose a control structure
that combines the advantages of online learning with the
robustness of classical feedback controllers to compensate
for changes in the dynamic properties of the robot. It is
worth mentioning that the controller proposed in this work
is conceived as an adaptation technique to modify limit
walking cycle gait trajectories already obtained by existing
trajectory planning algorithms. Therefore, we do not focus
on the process of obtaining such trajectories. Instead, we
present a novel structure of adaptive feedback regulators,
which augment the nominal gaits trajectories rendering stable
walking limit cycles at any desired walking speed within a
wide range despite the changes in model parameters.

We further summarize the primary contributions of the
present paper as follows:

• A novel velocity tracking controller for bipedal walk-
ing is proposed. Through a nonlinear neural network
parameterization, the proposed adaptation scheme is
implemented online along with the nominal controller
with fast convergence to steady-state velocity under
various dynamic uncertainties. In addition, note that
the proposed adaptation framework is compatible with
nominal controllers derived in both model-free and
model-based fashions, and its simple structure makes
it feasible to implement on real-time controllers.

• The proposed method yields consistent performance
against significant uncertainties of dynamic properties.
In particular, we show the robust performance of the
adaptive controller with pelvis mass experiencing up
to 130% of the mass increase, and the center of mass
assigned with up to 0.1 m offset.

• The adaptation scheme does not require any dynamic
or kinematic properties of the robot. The prorogation of
the adaptive controller only relies on observable states
and measurable tracking error.

The remainder of the paper is organized as follows.
Section II reviews the basics of hybrid zero dynamics
and heuristic regulators for velocity regulation. Section III
present our main result of the paper, a novel neural-network
based adaptive feedback regulators for dynamics uncertain-

ties, and Section IV shows the improved performance of
the proposed approach on 3D Cassie robot in simulation.
Conclusions are given in Section V.

II. PROBLEM FORMULATION

In this section, we first describe the classical structure of
the HZD-based feedback controllers for 3D walking robots.
Then we discuss how heuristic regulators can be designed to
track velocity under model uncertainties.

A. HZD-based Feedback Controllers

The HZD framework provides conditions for the existence
of provably stable limit walking cycles by enforcing virtual
constraints that are invariant through impact. This technique
allows synthesizing feedback controllers that realize stable
and dynamic locomotion in 2D/3D robots [13], [14].
Virtual Constraints: Let q be the vector of the joint
coordinates of the robot. The virtual constraints are defined
as the difference between the actual and desired outputs of
the robot [14]:

y2 := ya
2(q)−yd

2(τ,α), (1)

where yd
2 is given as a vector of Bézier polynomials param-

eterized by the coefficients α , and τ ∈ [0,1] is the phase
variable that synchronizes all virtual constraints. In this
paper, we choose τ to be the scaled relative time during
one walking step, i.e.,

τ(t) =
t− t−

tstep
, (2)

where tstep is the duration of one walking step, and t−

is the time at the beginning of the step. Typically, the
coefficients of desired outputs are determined via model-
based offline gait optimization to achieve different periodic
walking motions [15].

B. Dynamics Uncertainties and Heuristic Regulators

The mismatch between the mathematical model and the
real model of 3D bipedal robots leads to the failure of the de-
signed controllers when applied to the real hardware. To pre-
vent from falling, researchers proposed to use heuristically-
designed feedback regulators on top of the HZD-based
designed controllers to realize asymptotic stability of the
walking cycle [16], [17].

In practice, two regulators are mostly used to stabilize the
walking motion of a 3D bipedal robot: foot placement and
torso regulators [2], [11], [17]. These regulators often use
decoupled structures, relating certain joints with a specific
desired feature—such as hip velocity or torso inclination—of
the robot motion. For example, the foot placement regulator
adds an offset to the desired swing hip pitch and swing hip
roll joints to regulate the longitudinal and lateral walking
speeds, respectively, and prevent the robot from falling.
These offsets are determined by

δ
sw
hpitch[k] = Kpx(vx[k]− vd

x )+Kdx(vx[k]− vx[k−1]), (3)

δ
sw
hroll [k] = Kpy(vy[k]− vd

y )+Kdy(vy[k]− vy[k−1]), (4)



where vx[k] and vy[k] are the average longitudinal and lateral
speeds of the robot at the middle of step k, vd

x , vd
y are the

reference speeds, and Kpx ,Kdx ,Kpy ,Kdy are manually tuned
gains. The readers can refer to [2], [11], [17] for additional
information about the other regulators.

III. APPROACH

In this section, we propose a non-conventional controller
structure using an adaptive neural network to realize stable
walking while tracking desired walking speeds in the pres-
ence of changes in the model properties.

A. Motivation

Motivated by the work of [18]–[21] in the application
of neural networks for the control of nonlinear systems
e.g., robotics manipulators, we propose a framework of
adaptive neural network-based controllers that compensate
the unknown dynamics of the system while tracking the
desired velocity. In addition, we show that the proposed
network could be seen as a generalization of the heuristic
regulators described in Section II-B, and its extension to the
case of unknown dynamics. By this, we aim to develop a new
general framework for the development of adaptive feedback
controllers that render stable limit walking cycles, even when
the dynamic properties of the robot change. To validate the
proposed method in simulation, we use as our testbed the
Cassie-series bipedal robot described in Section II-A.

B. A Review of Adaptive Neural Network-based Controller

Typical adaptive controllers rely on approximating the
unknown dynamics of the dynamical system as the linear
combination of unknown parameters of the system. Then, a
control feedback law is computed using the approximation
of the unknown dynamics based on the estimation of the
unknown parameters, which are updated using a close form
update rule. In particular, [22] showed that the unknown
dynamics of a robotic manipulator could be approximated
as

τ̃ = Y(q)ω, (5)

where τ̃ is the approximated unknown dynamics, Y(q) is a
matrix of functions dependent on the state of the robot, and
ω is a vector of parameters. Then, an update law of the form

˙̂ω =−KYᵀs, (6)

is used to estimate the unknown parameters online, where K
is a symmetric positive definite matrix, and s is the filtered
tracking error. However, these controllers are restricted to
the prior knowledge of the dynamics structure and extensive
system modeling and preliminary analysis are required to
compute the regression matrix.

With the emergence of learning methods and the ability
of neural networks to approximate complex, nonlinear func-
tions, new neural network-based adaptive control algorithms
were proposed [18]–[21]. The main advantage of neural
network-based controllers is that they can virtually approxi-
mate any smooth functions, including the unknown dynamics

Fig. 2: The feedback structure of the adaptive regulator
integrated into the HZD control framework.

in a robotic system, without the need for computing a
regression matrix. Analogous to equation (5), the unknown
dynamics of more complex systems, for which a linear
parameterization is not accurate enough, can be effectively
approximated using neural networks. Then, the nonlinear
parameterization of the unknown dynamics can be obtained
through neural networks as

f̂ (x) = Ŵᵀ
σ(V̂ᵀx), (7)

where Ŵ, V̂ are estimates of the ideal neural network weights
provided by some on-line weight tuning algorithms.

C. Adaptive Feedback Regulators for Virtual Constraints

In this section, we propose an adaptive feedback regulator
for virtual constraints to achieve improved speed tracking
under model uncertainties. The proposed regulator will have
the following form:

y2 := ya
2(q)− (yd

2(τ(t),α)+δyd
2), (8)

where δyd
2 represent the modification in the original trajec-

tory to render a stable walking limit cycle, which can be
obtained either from offline optimization [14], [17], or offline
training of a neural network policy [6], [7].

We will then use an adaptive neural network based
feedback controller to determine δyd

2 , as shown in Fig. 2.
Inspired by the results of [8], we focus our analysis on
three specific outputs: i) the virtual constraints related to the
robot’s joints that control the step length in the longitudinal
plane (swing hip pitch angle, swing knee), ii) the virtual
constraints related to the joints that control the step length
in the frontal plane (swing hip roll angle, stance hip roll
angle), and iii) the virtual constraints related with the joints
that control torso inclination (stance hip pitch angle, stance
knee, stance hip roll angle). Let vx[k] and vy[k] be the average
longitudinal and lateral speeds of the robot in the middle of
step k, vd

x , vd
x be the reference speeds, φ ,φ d , φ̇ , φ̇ d be the

actual and desired torso inclination and angular velocity, we
define

δyd
2,x = Kpx(vx[k]− vd

x )+Kdx(vx[k]− vx[k−1])+Ψx,

δyd
2,y = Kpy(vy[k]− vd

y )+Kdy(vy[k]− vy[k−1])+Ψy,

δyd
2,φ = Kpφ

(φ −φ
d)+Kdφ

(φ̇ − φ̇
d)+Ψφ .

(9)



Fig. 3: Detailed structure of the proposed adaptive neural
network-based controller.

where δyd
2,x, δyd

2,y, δyd
2,φ represent the modification that

compensates the unknown dynamics corresponding to each
of the three decoupled systems respectively. A detailed
structure for the decoupled controllers is presented in Fig. 3,
each of which resembles a feedback PD controller and a feed-
forward neural network term to track desired behaviors under
uncertainties. This adaptive controller structure enhances the
robustness of the controller since it allows the PD term
to keep the system stable while the network is learning to
compensate changes in the dynamic properties of the robot
or the environment. The details of the structure and update
rule of the neural networks that compute Ψx,Ψy,Ψφ will be
discussed in the following section.

Finally, we denote that the structure chosen for the adap-
tive controllers proposed in (9) allows us to generalize the
use of the additional regulators to stabilize the walking
limit cycle described in Section II. In particular, when the
output of the neural network is zero, the adaptive controller
renders the structure of the traditional regulators. However,
the generalized structure proposed by this adaptive controller
does not restrict the regulation of the joint trajectories to only
the swing hip pitch angle (as in the traditional approach)
but allows the controller to learn which trajectories should
be modified in order to achieve the successful regulation
of the desired longitudinal and lateral velocity. Section IV
illustrates this point in detail through simulation results on
the bipedal robot Cassie under various scenarios.

D. Adaptive Neural Network Structure

As shown in Fig. 3, the inputs of the neural networks
are the actual and desired values of the longitudinal and
lateral velocity, torso inclination, and torso angular velocity.
The outputs are the feedforward terms compensating for the
unknown dynamics of the decoupled systems. Each network
only has one hidden layer with one thousand neurons. Notice
that we can think of the hidden layer neurons as creating a
random set of basis functions, and the task of the neural

network is to learn the weights on those basis functions that
provide the desired compensation as a function of the inputs
to the matrix. This is a variant of the adaptive controller
proposed in [22], and can be given as a simple delta-rule
that only applies to the output weights:

∆wi, j =−γE jhi, (10)

where wi, j is the weight from the ith hidden neuron to the jth
output, E j is the error signal for the jth output (the difference
between the desired and current velocity), hi is the output of
the ith hidden neuron, and γ is the learning rate chosen as
γ = 1e−4. This is structurally the same as (6).

It is important to mention that the neural network does
not require training a priori since the learning process is
performed online. The output weights are initialized to zero,
and the input weights are randomly initialized. We use the
encoder initialization scheme from [23] to generate input
weights with a broad distribution, ensuring a collection of
basis functions that covers the space. This general approach
has been used as a model of biological adaptive arm control
[24] and as a simple benchmark task controlling an inverted
pendulum [25], but here we apply it in a very different
context and with a different source of the error signal.
Previous applications had always been in the domain of
torque control and used the output of a PD controller to
generate the error signal.

IV. SIMULATION RESULTS

The proposed method is validated in a dynamic simulation
of Cassie using Mujoco [26]. This section presents the
results of the adaptive neural network based controller when
the robot is subject to changes in the dynamic properties
of the robot such as variation in the mass and center of
mass (COM) position of the robot’s torso. We also present
a comparison of the adaptive controller with the traditional
HZD controller and HZD-based RL controller. Finally, we
test the robustness of the controller when the robot is subject
to adversarial forces and walking on uneven terrain. These
results of the evaluation of the proposed adaptive controller
can be visualized in the supplemental video material accom-
panying this submission [27].

A. Response to changes in the model properties of the robot

First, we tested the response of the controller when the
mass of the torso is increased by approximately 50%, 100%
and 130%. The original mass of the robot’s torso is 10.33kg;
then, after the increments in mass the total mass of the torso
corresponds to 15kg, 20kg, and 23kg respectively. Fig. 4 (a)
shows the response for these three cases. Interestingly, we
can see that the tracking error of the average speed does not
converge to zero immediately, but it takes some time until the
controller learns to compensate for the unknown dynamics,
which illustrates the on-line learning process of the adaptive
controller.

We also tested the controller with changes in different
dynamic properties like the position of the center of mass
of the pelvis, by adding an offset of +0.05m, +0.1m, and



Fig. 4: The response of of the adaptive controller when (a)
the torso’s mass is increased; (b) the torso’s center of mass
position shifts in the longitudinal direction.

−0.1m in the longitudinal direction. The responses of the
adaptive controller for the 3 cases are shown in Fig. 4 (b),
where we can see that the controller performs well even
under large parameter uncertainties of the robot’s dynamics.
Similarly as in the previous test, we can see the learning
curve of the controller while the actual walking velocity
converges to the desired velocity.

B. Comparison with traditional and RL HZD-based con-
troller

To illustrate the significant contribution of the adaptive
controller to the speed tracking and stability of the system in
the face of model uncertainties, we compared its performance
against two HZD-based controllers. Fig. 5 and Fig. 6 show
the velocity tracking performance of the adaptive controller
when compared with the classic HZD-based controller for
tracking fixed desired velocity [17], and with an HZD-
based Reinforcement Learning controller for tracking varying
velocities [7]. The robot’s pelvis mass is increased by 5kg,
and an offset of +0.1m is added to the pelvis’ COM in the
longitudinal direction. As shown in Fig. 5 and Fig. 6, the
existing two HZD-based controllers yield significantly large
steady-state tracking error when the dynamics properties of
the robot change relative to the model used in the design
of these controllers. With the adaptive controller, however,
the actual walking velocities converge to a wide range of
desired velocities under these changes. More importantly, the
convergence is achieved through online learning of the model
and does not require a priori training.

To further demonstrate the effectiveness of the adaptive
controller to compensate for the unknown dynamics when
tracking desired walking speeds in different directions we
tested the controller for different walking speeds in diagonal
directions. Fig. 7 shows the performance of the controller
when tracking diagonal speed with vx = 0.4,vy =−0.2, and
vx = 0.6,vy = 0.1,

Fig. 5: Velocity tracking performance of the proposed adap-
tive controller compared against the classic HZD-based
controller. A significant steady-state tracking error can be
observed when the adaptive controller is not being used.

Fig. 6: The steady-state error of the HZD-based RL controller
is more noticeable as the desired walking velocity increases
whereas the proposed adaptive controller has almost the same
convergence performance regardless of the walking velocity.

Fig. 7: Performance of the proposed adaptive controller
compared with an HZD-based RL controller under changes
in model properties when tracking desired velocities in both
longitudinal and lateral directions at the same time.



Fig. 8: The response of the walking motion using the pro-
posed controller when various adversarial forces are applied
in the forward and backward directions.

C. Robustness

Two tests were performed to evaluate the robustness of the
adaptive controller, i) external disturbance rejections, and ii)
walking on uneven terrain. To evaluate external disturbance
rejection, an adversarial force is applied directly at the
robot’s torso in both forward and backward directions 2.5
seconds after the test started. Fig. 8, shows the response of
the adaptive controller when an adversarial force of 30N and
a force of 25N are applied during 0.1 seconds in the forward
and backward directions, respectively. The controller can
handle both external forces successfully without falling and,
more importantly, recovering the speed tracking performance
quickly after the disturbance is applied.

Fig. 9 illustrates the response of the adaptive controller
when the robot is walking on uneven terrain. The terrain
presents significant irregularities with slopes up to 20 degrees
with a maximum height of 0.4m. The controller adapts
successfully to the different terrain changes and keeps close
tracking of the desired velocity throughout the whole test.

D. Adaptation redundancy

In this subsection, we demonstrate the adaptability of the
proposed adaptive controller framework to adapt to different
operating conditions taking advantage of the generalized
structure of the controller. In particular, Fig. 10 (a) shows
the speed tracking performance of the adaptive controller for
two cases: 1) both hip and knee joints use the compensation
provided by the neural network to regulate the walking speed,
and 2) the output of the neural network is forced to zero to
test the adaptability of the controller to unknown scenarios.
The results of this test are shown in Fig. 10 (b), where we
see that for case 1, both stance hip and stance knee joints
contribute equally to the compensation of the unknown dy-
namics while tracking the desired speed of the robot. For case
2, since we force the neural network output corresponding
to the hip joint to zero, the adaptive controller learns a
different way to compensate for the unknown dynamics of
the system by only using the compensation available in the
knee joint, which demonstrate the adaptation capabilities of
the proposed controller.

Fig. 9: Performance of the adaptive controller compared
against a HZD-based RL controller when changing dynamic
properties of the robot while walking on uneven terrain.

Fig. 10: Effect of neural network compensation to different
joints in the adaptation capability of the proposed controller.

V. CONCLUSION

This paper presents a general adaptive neural network-
based controller for velocity tracking of 3D bipedal robots
under model uncertainties. The proposed adaptive controller
builds upon the concept of the virtual constraint of HZD-
based controllers to incorporate adaptive trajectory compen-
sation using neural networks to compensate for the unknown
dynamics of the system. The result is a structure of simple yet
effective adaptive neural network based controllers applied
in a decoupled manner to render stable and robust limit
walking cycles for effectively tracking desired walking veloc-
ity in both longitudinal and lateral directions. The adaptive
controller shows the online learning process of the neural
network is effective in compensating different changes in
the dynamic properties of the system, such as the torso
mass and the center of mass position of the torso. Moreover,
the controller can learn different adaptation techniques such
as using the knee joint instead of the hip joint for com-
pensating the unknown dynamics. Improved performance of
disturbance rejections—in the forms of adversarial forces
and uneven terrains—are also observed with the proposed
controller. The future work will focus on implementing the
adaptive feedback controller on actual robots in experiments.
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