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Abstract— In this paper, a hierarchical and robust frame-
work for learning bipedal locomotion is presented and suc-
cessfully implemented on the 3D biped robot Digit built by
Agility Robotics. We propose a cascade-structure controller
that combines the learning process with intuitive feedback
regulations. This design allows the framework to realize robust
and stable walking with a reduced-dimensional state and action
spaces of the policy, significantly simplifying the design and
increasing the sampling efficiency of the learning method. The
inclusion of feedback regulation into the framework improves
the robustness of the learned walking gait and ensures the
success of the sim-to-real transfer of the proposed controller
with minimal tuning. We specifically present a learning pipeline
that considers hardware-feasible initial poses of the robot within
the learning process to ensure the initial state of the learning is
replicated as close as possible to the initial state of the robot in
hardware experiments. Finally, we demonstrate the feasibility
of our method by successfully transferring the learned policy
in simulation to the Digit robot hardware, realizing sustained
walking gaits under external force disturbances and challenging
terrains not incurred during the training process. To the best
of our knowledge, this is the first time a learning-based policy
is transferred successfully to the Digit robot in hardware
experiments.

I. INTRODUCTION

For the bipedal locomotion problem, policy robustness
is a critical characteristic and remains one of the biggest
challenges in the field. In practice, the robustness of the
control policy can be presented as (i) the capability of
handling various external disturbances (e.g., push recovery),
(ii) maintaining stable gaits while operating under various
terrain conditions, and (iii) accomplishing the sim-to-real
transfer with as little effort as possible. In this paper, we
present a successful application of designing a feedback
motion policy on Digit, a challenging 3D bipedal robot,
and demonstrate robust performance among all the aspects
mentioned above.

In general, a robust bipedal locomotion policy can be
obtained through (i) the model-based approach, (ii) the
learning-based approach, or (iii) a combination of both. In the
model-based regime, existing research typically relies on a
simplified template model [1], [2]. Some have also explored
robust control formulations of Control Lyapunov Function
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Fig. 1: Digit recovering from an external force disturbance
applied in the lateral direction.

Control Barrier Functions (CLF-CBF) [3], and Hybrid Zero
Dynamics (HZD) inspired solutions [4]. In general, the
derived policy from the simplified model requires further
tuning of low-level control heuristics. On the other hand, a
typical learning-based solution involves supervised learning,
reinforcement learning, and imitation learning. The policy is
typically constructed in an end-to-end manner [5], directly
working with the robot’s full-body dynamics. Some existing
work has shown remarkable progress in push-recovery [6]
and operating in various terrain conditions [7]. While model-
based methods often rely on a simplified model and require
extensive control gain tuning, most learning-based solutions
require a large amount of data.

A locomotion policy combining the learning-based and the
model-based solution is typically formulated in a cascade
structure. The high-level controller computes a reference
trajectory of a selected anchor point (e.g., the center of
mass position). The lower-level controller then seeks to track
such a learned reference through basic model information
such as kinematics. Morimoto et.al. [8], [9] learned the
Poincaré map of the periodic walking pattern and applied
the method to two 2D bipedal robots. Some recent work
has proposed to learn the joint-level trajectory for each joint
as the reference motion through supervised learning [10]
or using reinforcement learning [11]–[13]. This approach
simplifies the design of the lower-level tracking, which can
be as simple as a PD controller.

With the aforementioned approaches, the empirical suc-
cesses are mostly evaluated in simulations. Some recent
work has sought to tackle the sim-to-real problem through
dynamics randomization [14], system identification [15], and
periodic reward composition [16]. However, many of these
methods still suffer from poor sampling efficiency. Moreover,



the robustness is often partially validated in real hardware
experiments. To the best of our knowledge, it remains
a challenge to efficiently obtain a locomotion policy that
handles external disturbances and uneven terrains with little
effort sim-to-real transfer. The challenge further escalates
as one considers a 3D, underactuated, and highly nonlinear
bipedal system such as the Digit robot (see Fig. 2).

Motivated by the existing challenges, this paper enhances
the hybrid zero dynamics inspired reinforcement learning
framework presented in our previous work [11], [13], em-
phasizing the policy robustness and sim-to-real transfer. Built
upon [13], this paper adds important considerations to the
learning framework for the effective transfer of the policy
learned in simulation to the real robot. In particular, we
add a balancing controller into the learning pipeline that
ensures the training starts from a pool of feasible initial
states. Moreover, we provide a detailed implementation in
hardware to couple the high-level learning-based controller
with the low-level model-based controller. Finally, we show
results from exhaustive testing of the learned policy under
challenging terrains and external disturbances.

The learned policy is able to achieve robust bipedal
locomotion on a challenging 3D Digit robot in experiments
to accomplish the following tasks.

• Learn disturbance resistance without explicitly experi-
encing adversarial attacks in training.

• Adapt to various terrain conditions with the policy
learning process only limited to flat ground.

• Transfer the learned policy between different simulation
environments and from simulation to the real robot
without randomized dynamics in training or extensive
hyper-parameter tuning.

It is worth emphasizing that the policy is learned from
scratch and does not rely on demonstrations. To the best
of our knowledge, this is the first successful sim-to-real
transfer of a learning-based policy to Digit hardware. We
further emphasize the following features that contribute to the
aforementioned robust performance of the proposed policy:

The high-level learning-based policy propagates refer-
ence motion trajectories in real-time at a lower frequency
compatible with real hardware implementation. This encour-
ages the stability of the walking gait by modifying the
reference trajectories accordingly to the reduced-dimensional
state of the robot.

The low-level model-based regulation applies compen-
sation to the reference trajectories at a higher frequency
based on instantaneous state feedback. This feedback-based
trajectory regulation compensates for uncertainty in the en-
vironment, and based on our experiment observations, it is
one of the key factors leading to the effortless sim-to-real
transfer (as illustrated in Fig. 6).

A model-based balancing controller is implemented that
induces a set of feasible initialization states for operations
in the simulator and with the real robot. While a feasible
initialization is typically not of interest in simulation given
that the state can be set arbitrarily, it is crucial to the observed
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Fig. 2: Digit robot (left) and its kinematic tree structure
(right). The floating base coordinate is located at the pelvis
link. Only left leg and left arm joints are shown. Green
represents actuated leg joints, blue represents passive leg
joints, and orange represents arm joints.

success of implementing the proposed locomotion policy to
work with Digit in real-world experiments.

The remainder of the paper is organized as follows.
Section II presents details of the Digit robot. Section III
introduces the proposed framework, including the high-
level learning module, the low-level model-based controllers,
the training, and the execution of the overall framework.
Section IV includes details about the controller implemen-
tation on hardware. A series of experiments are included in
Section V, emphasizing the locomotion robustness in terms
of disturbance rejection, stable walking gaits on uneven
terrains, and effortless sim-to-real transfer. Section VI con-
cludes the paper and discusses future work.

II. KINEMATIC MODEL OF DIGIT ROBOT

This section will briefly introduce the Digit robot and its
kinematic model and notations used in the following sections.

A. Robot Hardware
Digit is a versatile bipedal robot designed and built by

Agility Robotics [17]. The robot has an integrated perception
system, 20 actuated joints, 1 IMU, and 30 degrees of freedom
(DoF) that allows robust and dynamic locomotion. The
robot design is based on its predecessor Cassie, whose legs
morphology is derived from an Ostrich-like bird. Hence, the
location of the knee and ankle is not immediately evident
from the robot’s appearance. Fig. 2 shows the Digit robot
with a description of the body links and its kinematic
structure. The total weight of the robot is 48 kg. The robot’s
torso weighs 15 kg and contains Digit’s onboard computer,
power source, and vision sensors. Vision sensors include a
LiDAR, an RGB camera, three monochrome depth cameras,
and an RGB-depth camera.

B. Kinematic Model and Notations
Each arm of Digit has four joints for basic manipulation

tasks. Each leg has eight joints, from which four are directly



actuated by electrical motors (hip yaw, hip roll, hip pitch,
knee), two are indirectly actuated by electrical motors (toeA,
toeB) and correspond to the actuated joints of the foot (foot
pitch, foot roll). The addition of the foot pitch and foot roll
joints improves the ability to balance stably on a wide variety
of terrains. The remaining two joints (ankle and shin) are
passive, and they are connected via specially designed leaf-
spring four-bar linkages for additional compliance.

As shown in Fig. 2, the variables qx,qy,qz denote the
Cartesian position of the robot’s pelvis, while the torso
orientation is represented by the x-y-z Euler angles (roll,
pitch, yaw) as qψ ,qθ ,qφ . Then, the coordinate of the floating
base coordinate system at the pelvis is denoted by

qb = [qx,qy,qz,qψ ,qθ ,qφ ]
T . (1)

The actuated joints are denoted by the vector given as,

qa = [q1L,q2L,q3L,q4L,q7L,q8L,q9L,q10L,q11L,q12L,

q1L,q2L,q3L,q4L,q7L,q8L,q9L,q10L,q11L,q12L]
T , (2)

where the joints q1-q4 correspond to the leg’s actuated
joints (i.e. hip roll, hip yaw, hip pitch, knee), joints q7,q8
correspond to the foot pitch and foot roll, and joints q9-q12
correspond to the arm’s actuated joints (i.e. shoulder roll,
shoulder pitch, shoulder yaw, elbow). The passive joints are
denoted by the vector:

qp = [q5L,q6L,q5R,q6R]
T , (3)

where q5,q6 correspond to the shin and tarsus joints. Hence,
the generalized coordinates of Digit robot are denoted by:

q = [qb,qa,qp]T . (4)

In addition, the robot has four end-effectors, which are the
left/right feet and fists. We define the Cartesian position of
any of these end-effectors as:

xee(q) = [xee,yee,zee]
T . (5)

The cartesian position of the center of mass (CoM) is
denoted by:

xCoM(q) = [xCoM,yCoM,zCoM]T . (6)

The current position of the robot’s feet and CoM can
be determined by applying Forward Kinematics (FK). In
particular, we use the open-source package FROST [18] to
obtain symbolic expressions for x f ootL(q), x f ootR(q), and
xCoM(q). We created a URDF model of Digit based on the
XML model provided by Agility Robotics.

III. LEARNING APPROACH

In this section, we build upon our previous work proposed
in [11], [13] to implement a cascade-structure learning
framework that realizes stable and robust walking gaits for
real 3D bipedal robots. The specific design ensures the
successful transfer of learned policies in simulation to robot
hardware with minimal turning.

Fig. 3: Overall structure of the proposed Trajectory-based
RL framework. The trajectory planning phase is done by the
neural network policy, while the feedback regulation block
uses the robot’s sensor information to improve the stability
of the walking gait and the velocity tracking performance.

A. Overview of the Learning Framework

As shown in Fig. 3, the proposed framework presents
a cascade decoupled structure to tackle the 3D walking
problem through its two main components: neural-network
trajectory planning and feedback regulation.

The neural network trajectory planner uses a reduced-
dimensional representation of the robot states to compute
a set of coefficients α that parameterize the actuated joints’
reference trajectories yd through 5th-order Bézier Polynomi-
als. The detailed structure of the neural network is provided
in Section III-C. Since the forward propagation of the neural
network could take significant time when compared with
the running frequency of the low-level controller (1 kHz),
the trajectory planning phase runs at a lower frequency
(250 Hz). This consideration is especially relevant for the
implementation of the learned policy on the real robot. More
importantly, it opens the door to the real-time implementation
of new learning structures that may be computationally
expensive in both simulation and hardware.

The feedback regulation uses the robot’s pelvis velocities
and torso orientation to modify the joint reference trajectories
through δ d. It compensates for the uncertainty in the robot’s
model and the environment, improving the robustness of
the walking gait. To track the compensated reference joint
trajectories yreg, the joint-level PD controllers compute the
torque u, which is applied directly to the actuated joints of
the robot. The compensations applied during the feedback
regulation are discussed in detail in Section IV-B. The low-
level feedback regulation is a key component of our control
structure to close the sim-to-real gap, enabling the successful
transfer of the learned policy to hardware without the need
for exhaustive tuning, dynamic randomization, or curriculum
learning.

B. Dimensionality Reduction of the State and Action Space

By applying physical insights from the walking motion,
we can significantly reduce the number of inputs and outputs
of the NN. Unlike other end-to-end RL frameworks, we



do not use all the available states of the robot to feed
the NN. Instead, we select states that provide insightful
information such as the torso orientation (qψ ,qθ ,qφ ), pelvis
linear velocity (q̇x, q̇y, q̇z), torso angular velocity (q̇ψ , q̇θ , q̇φ ),
and desired walking direction, which is encoded by the
desired forward and lateral walking velocity (q̇d

x , q̇
d
y ).

To reduce the dimension of the action space, we will
keep the arms joints fixed during the walking motion, the
stance foot passive, and the swing foot parallel to the ground
during the walking gait. Without the need for determining
reference trajectories for arm and foot joints, we reduce the
number of reference trajectories needed to be computed by
the NN to eight, with each leg having three hip joints and
one knee joint. In addition, we impose a symmetry condition
between the right and left stance during the walking gait.
Therefore, given the set of coefficients for the right stance
αR ∈ R(M+1)×N , where M = 5 is the degree of the Bézier
polynomials and N = 8 is the number of reference trajecto-
ries, we can obtain the set of coefficients for the left stance
αL ∈ R(M+1)×N by the symmetry condition:

α
L = Tα

R, (7)

where T ∈ RN×N is a sparse transformation matrix that
represents the symmetry between the joints of the right and
left legs of the robot.

To further reduce the action space and encourage the
smoothness of the control actions after the ground impact,
we enforce that at the beginning of every step, the initial
point of the Bézier polynomial coincides with the current
position of the robot’s joints. That is, for each joint i with
Bézier coefficients αR

i ∈ RM+1, we have

α
R
i [0] = qi(τ(0)), τ ∈ [0,1], (8)

where τ is the time-based phase variable used to parameterize
the Bézier Polynomials, denoted by τ(t) = t−t−

Tstep
, where t− is

the time at the beginning of the step, and Tstep = 0.5[s] is the
time duration of one walking step. In this work, the Tstep is
kept fixed during the training and evaluation of the policy.

Finally, we enforce the position of the actuated joints to
be the same at the end of the right stance and the beginning
of the left stance. This encourages continuity in the joint
position trajectories after switching the stance foot. Given
the properties of the Bézier polynomials, this condition can
be enforced through αR

i [M] = αL
i [0].

This means two out of the six Bézier coefficients for each
joint can be obtained through the above conditions. There-
fore, we only need to find the remaining four coefficients for
each of the eight reference trajectories, which results in an
action space of dimension 32.

C. Neural Network Structure

Given the considerations presented in Section III-B, the
number of inputs for the NN is 10, and the number of outputs
is 32. We choose the number of hidden layers of the NN to
be 4, each with 32 neurons. The activation function for the
hidden layers is ReLU, and the activation function for the
output layer is sigmoid. Finally, we scale the output of the

Fig. 4: Pipeline of the proposed learning framework. A
standing controller is included within the pipeline of the
learning process to obtain a feasible set of initial states for
the policy training using a customized Mujoco environment.
Then, the trained policy is tested in a more realistic real-time
simulator. Finally, it is tested on hardware.

NN within a range of admissible motion for the robot’s joints.
In particular, we use the convex hull property of Bézier
polynomials to translate the joint limits to the corresponding
coefficients limits. Given the number of inputs and outputs of
the NN, the number of trainable parameters is 4576. To the
best of our knowledge, this is the smallest NN implemented
in hardware to realize 3D walking locomotion.

D. Walking Policy Learning Pipeline

Since the main purpose of this work is to implement a
learning framework that realizes a policy that is transferable
to the actual robot, we need to create a pipeline for the train-
ing process in simulation that renders working conditions as
close as possible to the real hardware. A diagram of the
training pipeline is shown if Fig. 4.

The initial state for each training episode is chosen ran-
domly from a pool of initial states whose kinematics and
dynamics are feasible to be implemented on the real robot. To
achieve this, we implement a standing controller that allows
the robot to start up from an arbitrary resting position when
the robot is hanging up from the lab’s crane. We tested the
controller successfully in hardware and used it to replicate
the standing process in simulation. More details about the
standing controller are provided in Section IV-A.

After the standing controller is activated and the robot is
able to stand and balance steadily in simulation, we capture
the state of the robot and save it in a pool of initial states.
We repeat the process 40 times to create a diverse enough
set of initial states that we can use for training our controller.
It is important to denote that this process does not provide
a fixed initial state for the walking gait but a whole set of
different initial configurations that encourage the randomness
of the initial state during the training while providing feasible
and safe starting conditions for the walking gait. Moreover,
this process does not provide any reference trajectories for
the walking gait that could bias the learning process to
specific or predefined walking gaits. Different from other RL
approaches to bipedal locomotion, our method learns walking
gaits from scratch without the need for predefined reference
trajectories or imitation learning.

Given the pool of initial states, we use a customized



environment using MuJoCo [19] to start the training process
using the Evolution Strategies (ES) algorithm. Our choice of
ES over other gradient-based algorithms is inspired by the
results in [20], where it is shown that the performance of
ES can be comparable with gradient-based RL algorithms,
especially when the number of time steps in an episode is
long, the actions have long-lasting effects, or if no good
value function estimate is available. All these conditions
are present in the task of learning bipedal locomotion gaits
from scratch. However, we denote that the proposed learning
pipeline is very general, and any other learning algorithm that
handles continuous action spaces could be used.

When the training is finished, we test the trained policy
in the Agility Robotics proprietary simulation software. This
simulation software provides a more realistic representation
of the robot’s dynamic behavior since it runs in real-time and
shares the same features with the hardware, such as low-level
API, communication delay, and dynamic parameters of the
robot.

Finally, once we verify the trained policy is deployed
safely in the AR simulation, we proceed to test it in the
hardware and verify its performance to do additional tuning
of the low-level controller gains if needed. A sequence of the
whole learning process and transference to real hardware can
be seen in the accompanying video submission.

E. Reward Function Design

Following the work in [13], we use a reward function of
the form:

r = wT [rvx ,rvy ,rh,rCoM,rang,rangvel ,ru,r f d ]
T . (9)

where w is a vector of weights corresponding to each
component. This reward function encourages forward and
lateral velocity tracking (through rvx ,rvy ), safety (through
rh,rCoM,r f d), energy efficiency (through ru) and natural
walking gaits (through rang,rangvel). The episode length is
10000 simulation steps, which are equivalent to 5 seconds,
and it has an early termination if any of the following
conditions are violated:

|qψ |< 0.5, |qθ |< 0.5, |qφ |< 0.5,
|q̇ψ |< 2, |q̇θ |< 2, |q̇φ |< 2,
0.8 < qz < 1.2, ∆ f < 0.05,

(10)

where qz is the height of the robot’s pelvis and ∆ f is the
distance between the feet.

IV. CONTROL IMPLEMENTATION ON HARDWARE

In this section, we provide details about the implementa-
tion of the high-level and low-level controllers of the control-
learning framework introduced in Section III. Moreover, we
provide details of the architecture of our controller and its
integration with Digit’s low-level API and communication
system. This architecture is presented in Fig. 5.

The Agility Robotics low-level API streams data using
the UDP protocol and enables the user to access the low-
level sensor data and give commands directly to the motor
drives. To keep the connection of the low-level API active

Fig. 5: Our controller architecture allows asynchronous op-
eration of the high-level and low-level controllers. Moreover,
it enables fast and reliable communication between different
control layers, external user inputs, and the Digit simula-
tor/hardware. Note that the same controller architecture can
be used for different tasks, e.g., walking, standing, crouching.

to receive sensor data, commands must be sent periodically.
Once the client is connected and sending commands, torque
control must be activated by requesting transition to low-level
API operation using JSON messages sent through Websocket
protocol.

In addition, we use the Robot Operating System (ROS) to
manage the communication between different components
in our system. This also adds significant flexibility to our
controller structure to include nodes for additional tasks such
as logging information, capturing external command inputs,
and accessing Digit’s perception system.

Since the low-level API needs to run at a very high
frequency (2 kHz), we use shared memory to enable fast
communication between the low-level API and our custom
main control code (1 kHz). The low-level API reads the sen-
sor measurements and writes them into the shared memory.
It also reads from the shared memory the torque information
and velocity commands written by the main control code and
sends the commands to the motors.

On the other hand, the main control code manages the
integration and synchronization of all the components in the
overall control structure. It reads the sensor information from
the shared memory and publishes it in ROS topics to make
it available for the other components of the systems, such as
the high-level planner. In this work, the high-level planner
is the trained NN policy, which takes the information from
the corresponding ROS topics to compute the output (coef-
ficients of the Bézier Polynomials) at a frequency of 250Hz.
Then, the high-level planner publishes this information in
its respective ROS topics to make it available for the main
control code.

The main control code reads the Bézier coefficients pub-
lished by the high-level planner and uses them to compute the



corresponding Bézier Polynomials that become the reference
trajectories for the robot’s joints. In addition, the main
control code uses the sensor feedback information shared
by the low-level API to compute the regulations needed to
compensate for the model mismatch between the simulation
and hardware. The integration of these low-level feedback
regulations into the learning framework is a key part that
makes the controller structure very robust to uncertainties in
the model and makes possible an almost zero effort transfer
from the policy learned in simulation into the real hardware.
The detailed structure of the regulations used in the low-level
controller is discussed in Section IV-B.

A. Standing Controller

The standing controller implemented for Digit is based
on the standing controller for Cassie in [21]. To ensure the
robot keeps the balance, the standing controller uses intuitive
and straightforward regulations based on the torso orientation
and the position of the CoM with respect to the feet. That
is, keeping the robot CoM within the support polygon while
both feet are flat on the ground. The CoM position in the
y-axis is adjusted by varying the legs’ length, while the CoM
in the x-axis is regulated by controlling the pitch angle of
the feet.

In our learning framework, the standing controller is used
to bring the robot to a stable configuration after initialization
in arbitrary standing positions. This process is repeated
several times in simulation until we obtain a diverse enough
pool of stable configurations that are realistic and feasible
to be implemented in hardware. This set of feasible initial
configurations is then used to choose the initial states during
the training process randomly.

B. Feedback Regulations

The feedback regulation module in our controller structure
is a key component of the framework as it allows the
controller to compensate the trajectories obtained from the
high-level planner to adapt it to unknown disturbances such
as the mismatch between the simulation model and real
robot, and environmental factors like external disturbances
or challenging terrains that the policy has not experimented
in simulation. These regulations are divided into three main
groups: foot placement, torso, and foot regulations.

Foot placement regulation controller has been widely used
in 3D bipedal walking robots to improve the speed tracking
and the stability and robustness of the walking gait [21]–
[23]. Longitudinal speed regulation, defined by (13), sets
a target offset in the swing hip pitch joint, whereas lateral
speed regulation (11) does the same for the swing hip roll
angle. Direction regulation (12) adds an offset to the yaw hip
angle to keep the torso yaw orientation at the desired angle.

δq1i = Sy(τ(Kpy(q̇y− q̇d
y )+Kdy(q̇y− q̇ls

y ))+βy), (11)

δq2i = τ(qφ −qd
φ ), (12)

δq3i =−(τ(Kpx(q̇x− q̇d
x )+Kdx(q̇x− q̇ls

x ))+βx), (13)

where i ∈ {L,R} depends on which foot is the swing foot,
Sy = 1 if i = L, Sy =−1 if i = R, q̇x, q̇y are the longitudinal
and lateral speeds of the robot, q̇ls

x , q̇ls
y are the speeds at the

end of the previous step, q̇d
x , q̇d

y are the reference speeds, and
Kpx ,Kdx ,Kpy ,Kdy are the proportional and derivative gains.

The phase variable τ is used to smooth the regulation at the
beginning of each walking step and reduce torque overshoots.
The term β is the output of an additional PI controller
used to compensate for the accumulated error in the velocity
and prevent the robot from drifting towards a non-desired
direction. Based on our experiments, the inclusion of β is
key in the successful sim-to-real transfer of our controller.
Torso regulation is applied to keep the torso in an upright
position, which is desired for a stable walking gait. Assuming
that the robot has a rigid body torso, simple PD controllers
defined by (14) and (15) can be applied respectively to the
hip roll q1i and hip pitch q3i angle of the stance leg:

uq1i =−(Kptroll (qψ −qd
ψ)+Kdtroll (q̇ψ − q̇d

ψ)), (14)

uq3i = Sθ (Kpt pitch(qθ −qd
θ )+Kdt pitch(q̇θ − q̇d

θ )), (15)

where i ∈ {L,R} depends on which foot is the stance foot,
Sθ = 1 if i = L,Sθ = −1 if i = R, qφ and qθ are the torso
roll and pitch angles, and Kptroll ,Kdtroll ,Kpt pitch ,Kdt pitch are
manually tuned gains.
Foot orientation regulation is applied to keep the swing foot
flat during the swinging phase to ensure a proper landing of
the foot on the ground. Since Digit has 2-DoF actuated feet,
one regulation is needed for each of the roll and pitch angles.
By using forward kinematics, the swing foot roll and pitch
regulation are determined by

qd
7i = qψ +q1i +S f (21deg) (16)

qd
8i = qθ +q3i +S f (6deg), (17)

where i ∈ {L,R} depends on which foot is the swing foot,
S f = 1 if i = L,S f =−1 if i = R, and qd

7i,q
d
8i are the desired

pitch and roll foot angle. Moreover, the stance foot is kept
passive during the stance phase, which helps to maintain the
stability of the walking gait, especially for soft or irregular
surfaces.

V. EXPERIMENTAL RESULTS

In this section, we validate the learning framework and
controller structure presented in this paper through simula-
tion and real hardware experiments on the Digit robot. We
prove that our controller structure allows the transference of
walking policies learned in simulation to the real hardware
with minimal tuning and enhanced robustness. To the best of
our knowledge, this is the first time that a policy learned in
simulation is successfully transferred to hardware to realize
stable and robust dynamic walking gaits for the Digit robot.
In addition, we show that the improved controller structure
presented in this work is robust enough to mitigate the
uncertainty in the robot’s dynamics caused by the mismatch
between the simulation and real hardware. Finally, by thor-
ough experiments on hardware, we show the robustness of
the learned controller against external disturbances applied to



(a) Limit walking cycle of trained policy in simulation. (b) Limit walking cycle of trained policy in real robot.

Fig. 6: Comparing limit walking cycles between the simulation trails and real-robot tests: (i) For the same joint, simulated
motion and real robot motion share similar torque limits. (ii) For all hip joints, the regulation term modifies the actual motion
leading to the slight difference of the limit walking cycles. (iii) As the regulation is not involved in any of the knee joints,
the limit walking cycles are almost identical.

the robot as well as its capability to adapt to various terrains
without the need for training for such challenging scenarios.

A. Sim-to-real Transfer and Stability of the Walking Gait

We transferred the learned policy trained in simulation into
the real robot, and we empirically tested the stability of the
walking gait by analyzing the walking limit cycle described
by the robot’s joints during the walking motion. Fig. 6a
shows the limit cycle described by some of the robot’s joints
while the robot is walking in place for about 1 minute in
simulation, while Fig. 6b shows the limit cycles from the
real experiment. The convergence of the walking limit cycle
to a stable periodic orbit demonstrates that the walking gait is
stable and symmetric, meaning that the policy is transferred
successfully from simulation to hardware.

B. Robustness to Disturbances

To evaluate the robustness of the policy against distur-
bances, external forces are applied to the robot in different
directions. Fig. 1 and Fig. 7 show respectively the transition
of the robot recovering from a push in the lateral direction
and the velocity profile of the robot during the disturbance.
In addition, Fig. 8 shows the limit cycles of the robot’s joints
when the disturbance is applied, where it can be seen that
the controller can recover effectively from the push as the
joint limit cycles return to a stable periodic orbit after the
disturbance.

C. Robustness on Different Terrains

To further evaluate the robustness of the learned control
policy, we make Digit walk in various terrains with different
difficulty levels. These terrains include flat vinyl ground,
mulch, flat rubber ground, and irregular rubber terrain. The
controller is able to adapt to any of these terrains while
keeping a stable and robust walking gait. Snapshots of the
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Fig. 7: Digit recovering from an external disturbance
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Fig. 8: Disturbance rejection of learned policy. The walking
limit cycles described before, during, and after the lateral
push show that the controller can effectively handle large
external disturbance forces.



Fig. 9: Digit walking on different terrains. From right to left,
we have vinyl, mulch, flat rubber, and irregular rubber terrain.
The stance foot is kept passive during the stance phase to
allow the foot to adapt easily to different terrains.

walking gait over the different terrains are shown in Fig. 9,
and the complete motion for all the tests performed can be
found in the accompanying video1.

VI. CONCLUSIONS

This paper presents a framework for learning robust
bipedal locomotion policies that can be transferred to real
hardware with minimal tuning. By combining a sample effi-
cient learning structure with intuitive but powerful feedback
regulations in a cascade structure, we decouple the learning
problem into two stages that work at a different frequency
to facilitate the implementation of the controller in the real
hardware. While the trajectory planning stage is handled by
the neural network to produce reference trajectories for the
actuated joints of the robot at a lower frequency (250 Hz), the
feedback regulation stage runs at a higher frequency (1 kHz)
using the sensor feedback to realize compensations of the
reference trajectories that guarantee the stability of the walk-
ing limit cycle. The result is policies learned from scratch
that are transferred successfully to hardware with minimal
tuning. The controller is exhaustively tested in hardware,
demonstrating stable walking gaits that are robust to external
disturbances and challenging terrain without being trained
under those conditions.

Future work will focus on leveraging the versatility of the
proposed framework to include arm motion for Digit as part
of the learning outcome and testing the learned policy in
more challenging and unstructured environments.
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