
Real-Time Navigation for Bipedal Robots in Dynamic Environments

Octavian A. Donca1, Chayapol Beokhaimook2, and Ayonga Hereid1

Abstract— The popularity of mobile robots has been steadily
growing, with these robots being increasingly utilized to execute
tasks previously completed by human workers. For bipedal
robots to see this same success, robust autonomous navigation
systems need to be developed that can execute in real-time and
respond to dynamic environments. These systems can be divided
into three stages: perception, planning, and control. A holistic
navigation framework for bipedal robots must successfully
integrate all three components of the autonomous navigation
problem to enable robust real-world navigation. In this paper,
we present a real-time navigation framework for bipedal robots
in dynamic environments. The proposed system addresses all
components of the navigation problem: We introduce a depth-
based perception system for obstacle detection, mapping, and
localization. A two-stage planner is developed to generate
collision-free trajectories robust to unknown and dynamic envi-
ronments. And execute trajectories on the Digit bipedal robot’s
walking gait controller. The navigation framework is validated
through a series of simulation and hardware experiments that
contain unknown environments and dynamic obstacles.

I. INTRODUCTION

Bipedal robots have been a popular field of research, due
to the large range of tasks they can be utilized in. The
general humanoid shape of bipedal robots allows them to
be better integrated into a society designed for humans.
However, for bipedal robots to be fully integrated into
society, robust autonomous navigation systems need to be
designed. These systems can generally be divided into three
stages: perception, planning, and control. It is only with the
combination of these three stages into a single navigation
framework in which bipedal robots can truly integrate into
human society.

In this paper, we seek to implement a holistic bipedal
robot navigation framework to enable the exploration of
unknown, dynamic environments. The three components of
autonomous navigation – perception, planning, and control
– must be combined into a single navigation system. The
perception system must be capable of extracting obstacle
and environment structure information. This environment
information must then be used to generate maps of the global
and local environment for planning. A planning framework
must generate global paths and local trajectories that are
robust to unknown environments and dynamic obstacles. Fur-
thermore, planning must respect the kinematic constraints of
the robot while avoiding obstacles to ensure safe and feasible
navigation. Finally, these trajectories must be executed with

*This work was supported in part by the National Science Foundation
under grant FRR-21441568.

1Mechanical and Aerospace Engineering, Ohio State University, Colum-
bus, OH, USA. (donca.2, hereid.1)@osu.edu.

2Ottonomy Inc. chayapol.beokhaimook@gmail.com

a low-level controller that maintains safe and stable walking
gaits. The combination of these capabilities will enable the
safe navigation of bipedal robots in complex environments.

Many works have expanded on the methods of A* [1]–
[5], PRM [6], and RRT [7]–[9] to the unique problems of
bipedal motion planning and footstep planning. However,
many of these works lack several components required for
autonomous navigation systems such as real-time perception,
mapping, and localization processes. Furthermore, only few
works expand further to adapt these bipedal motion planning
methods into more holistic bipedal navigation frameworks.
However, many are still unable to address components re-
quired in holistic autonomous bipedal systems such as on-
robot perception systems [10], localization methods [11],
robustness to dynamic obstacles [12], [13], or validation in
hardware.

We propose a real-time navigation framework for the
Digit robot based on Move Base Flex [14], as shown in
Fig. 1. The framework utilizes two RGB-Depth cameras and
a LiDAR sensor for perception. The environment is mapped
using global and local costmaps to capture large-scale en-
vironment structure and local dynamic obstacles. Odome-
try and localization are calculated using LiDAR Odometry
and Mapping during navigation. We developed a two-stage
planner to generate collision-free paths and obstacle avoiding
trajectories. In particular, a D* Lite global planner capable
of fast re-planning is used to generate high-level paths in
the global costmap. A Timed-Elastic-Band local planner then
follows the global path through optimization-based trajectory
generation that respects kinematic, velocity, acceleration,
and obstacle avoidance constraints. The local trajectory is
executed by generating a sequence of velocity commands
sent to Digit’s walking controller.

The rest of this paper is organized as follows. Section II
introduces the perception, mapping, and localization process.
Next, Section III describes the motion planning methods.
Section IV introduces the simulation and hardware experi-
ments and results. Finally, Section V concludes the naviga-
tion framework and provides future work discussion.

II. DIGIT PERCEPTION, MAPPING, AND LOCALIZATION

In this section, we describe the process of building a
real-time map of the environment using Digit’s perception
sensor suite and localizing Digit within that map. The robot
is equipped with two depth cameras (Intel RealSense D430,
placed at the pelvis, with one facing forwards at a downward
angle and one facing rearwards at a downward angle), and
one LiDAR sensor (Velodyne LiDAR VLP-16, placed on top
of Digit’s torso).

Fig. 1. The proposed navigation framework, an architecture built on top of Move Base Flex [14]. Point cloud detections are
used for obstacle segmentation by Random Sample Consensus [15]. Global and local costmaps [16] are generated from the
obstacle segmentations. LiDAR Odometry and Mapping [17] localizes the robot. A D* Lite global planner [18] uses the
global costmap to generate an optimal, collision-free path, which is used by the Timed-Elastic-Band local planner [19] to
generate local obstacle-avoiding trajectories, which are executed through velocity commands sent to Digit’s gait controller.

Fig. 2. Pre-processing and obstacle segmentation results. a)
Original point cloud, b) Filtered cloud, and c) Filtered point
cloud with segmented obstacles in red.

A. Perception

Point Cloud Pre-processing. Before these point clouds can
be used for obstacle segmentation, pre-processing is applied
to obtain a uniform density and remove outlier detections.
First, an average point cloud size reduction of 91.07% is
achieved using a Voxel Grid filter [20] for downsampling.
Additionally, inaccurate detections outside of the sensors’
accurate range are removed by removing points further
than 2.9 m of the depth cameras. Finally, erroneous points
detected underground due to reflections are removed using a
pass-through filter.

Obstacle Segmentation. After filtering the point cloud from
both depth cameras, the resulting clouds are fused into
a combined point cloud. The Random Sample Consensus
(RANSAC) method proposed in [15] is used to segment
obstacles from the fused point cloud. For a given point cloud,
P , RANSAC randomly samples 3 points to solve a unique
plane model:

ax+ by + cz + d = 0, (1)

where a, b, c, d ∈ R are the fitted coefficients, and (x, y, z) ∈
R3 represents the Cartesian coordinates of a point. Then,
the absolute distance, Di, of each point i in the cloud is
calculated for the fitted model:

Di =

∣∣∣∣axi + byi + czi + d√
a2 + b2 + c2

∣∣∣∣ , for i ∈ {1, 2, .., n}, (2)

where n, is the total number of points in the point cloud P .
Points within a given threshold distance, Dthreshold, to the
plane model are labeled as inliers of the model, denoted PI ,

PI = {pi ∈ P | Di < Dthreshold} . (3)

This process is repeated iteratively for a specified number of
iterations, N , determined statistically as:

N = round

(
log (1− α)

log (1− (1− ε)3)

)
, (4)

where α is the desired minimum probability of finding at
least one good plane from P , usually within [0.90 − 0.99],
and ε = (1− u) where u is the probability that any selected
point is an inlier. The resulting plane model is selected as the
one which generates the largest number of inliers with the
smallest standard deviation of distances. From the resulting
RANSAC plane model, inlier points are retained as ground
points, and outlier points are retained as obstacle points.

B. Mapping

To enable real-time planning in a dynamic environment,
we create two 2D layered costmaps presented in [16] to
represent the global and local environments.

1) Global Map: The global map is used to capture and
store macro-scale information of the environment. To enable
this, the global map uses a lower resolution of 0.1 m and
only updates at a rate of 2 Hz. Cells in the global map have
two possible states:

a) Occupied: Any 3D point detections from the percep-
tion sensors are projected onto the 2D plane of the global
map. Any cells that contain projected points are classified as
occupied and are considered untraversable.

b) Free: Any cell that is not occupied is considered
free and traversable for the robot. Unexplored regions of the
environment are by default considered to be free.

2) Local Map: The local map is used for obstacle avoid-
ance to capture a smaller region local to the robot where
dynamic obstacles may be present. We use a higher resolu-
tion of 0.05 m and update the local map at 10 Hz. The local
map introduces another cell state in addition to occupied and
free cells:

c) Inflated: Cells within a certain distance of obstacles
are inflated with non-zero cell costs. These non-zero costs are
used to penalize trajectory planning through regions close to
obstacles while not completely prohibiting trajectories from
entering these regions.

Fig. 3. Mapping results from the same environment as shown
in Fig. 2. a) Global map. b) Local map. c) Overlaid global
and local maps.

C. Localization

In this work, we use LiDAR Odometry and Mapping
(LOAM), a method introduced in [17], to estimate the
odometry of the robot. LOAM introduces simultaneously
executed algorithms to estimate LiDAR motion: an odometry
estimation algorithm and a mapping algorithm.

The LiDAR odometry algorithm runs at 10 Hz in which
the correspondences of extracted features from consecutive
LiDAR sensor sweeps are used to estimate the motion of the
sensor. For each sensor sweep, LOAM extracts points from
edge line and planar patch environment structures as features.
These edge lines and planar patches in the environment are
referenced as correspondences for feature points extracted
from the respective environment structures.

Using the correspondences, geometric relationships can be
formed between an edge point and its corresponding edge
line and a planar point and its corresponding planar patch:

fE

(
XL

(k+1,i),T
L
k+1

)
= dE , i ∈ Ek+1, (5)

fH

(
XL

(k+1,i),T
L
k+1

)
= dH, i ∈ Hk+1, (6)

where TL
k+1 is the LiDAR pose transform from [tk+1, t],

Ek+1 and Hk+1 are the sets of edge points and planar points
from the point cloud at tk+1, and dE and dH are the distances
from the corresponding edge and planar feature points to
their respective edge line and planar patch environment
structures. These relationships are stacked for each edge and
planar feature point to obtain a nonlinear function,

f
(
TL

k+1

)
= d, (7)

where each row of f is a feature point and each row of d
is the correspondance distance. This function is solved with
the Levenberg-Marquardt method [21] to obtain the motion
estimation of the LiDAR sensor.

The final result from this localization method is an es-
timate of the LiDAR sensor odometry relative to the 3D
environment. The coordinate frame origin of this odometry
is initialized to the initial position of the LiDAR sensor. The
mapping methods mentioned in Section II-B initialize the
global origin as the 2D components of this LOAM origin.
We then use this transform to localize the LiDAR sensor,
and thus the robot, in the 2D costmaps during navigation.

III. REAL-TIME MOTION PLANNING

Using the global and local map created through the
aforementioned process, we developed a real-time motion

planning framework for Digit using D* Lite and Timed-
Elastic-Band.

A. D* Lite global planner

During navigation through unknown environments,
collision-free paths through the global environment are
required. As unknown environments are explored, a planner
must be capable of quick re-planning to account for
discovered obstacles. Therefore, a D* Lite global planner
as presented in [18] is used to generate these global
paths. Capable of fast re-planning, D* Lite is designed to
solve goal-directed navigation problems in grid-represented
environments. This planning method is directly applied to
the 2D layered costmaps described in Section II-B.

The D* Lite planner assigns each explored cell, s, in the
costmap two values: an estimate of the goal distance, g(s) =
h(s, sstart), where h is the Euclidean distance from the start
cell sstart to the current cell s; and a one-step lookahead
value based on the g-value, rhs(s):

rhs(s) =

{
0 if s = sstart

mins′∈Pred(s) (g (s
′) + c (s′, s)) otherwise

(8)
where c(s′, s) is the cost to traverse to a neighboring cell,
s′, from the current cell, s.

To generate the shortest path, the planner begins from the
goal position and explores towards the start position. All
neighbors of the current cell are added to a priority queue
with a key value k(s) = [k1(s), k2(s)] with

k1(s) = min(g(s), rhs(s)) + h(s, sstart) + km, (9)
k2(s) = min(g(s), rhs(s)), (10)

where km is a scalar whose value is incremented each time
the planner re-plans, and is used to maintain the priority
queue ordering. The priority queue is sorted by the following
sort rule: a key k(s) ≤ k′(s) iff k1(s) < k′1(s) or k1(s) =
k′1(s) and k2(s) < k′2(s). The planner always expands the
lowest-valued cell in the priority queue. Then, the successor
cells, or neighbors, of this expanded cell have their g and
rhs values updated and are then themselves inserted into
the priority queue. This process ends once the start cell is
expanded or no more cells can be expanded.

The main planning algorithm initially generates the short-
est path based on the initial environment information. As
the robot explores new environment areas and obstacles are
detected, the costmap, and corresponding c values, is updated
to reflect the new obstacle detections and the global planner
re-calculates the global path as previously described. The
current path is stored as a sequence of waypoint cells within
the global costmap to follow and is updated at 5 Hz.

B. Timed-Elastic-Band local planner

The purpose of the local planner is to generate a smooth,
kinematically feasible trajectory that follows the global path
generated by the D* Lite global planner. The Timed-Elastic-
Band (TEB) method introduced in [19] originally implements
a trajectory optimization method for differential models. We

adapt this method for use in bipedal robots by applying
simplifying assumptions on the high-level kinematic con-
straints of the low-level controller to mimic those of a
differential drive robot. The bipedal locomotion is modeled
as a differential drive model to avoid several problems
introduced from the omnidirectional movement of bipedal
robots. For example, lateral velocity in bipedal locomotion
is difficult to control due to oscillating behaviors in the lateral
direction.

The TEB problem is defined as an open-loop optimization
task to find the sequence of controls needed to move the robot
from an initial pose, ss, to a goal pose, sf . A trajectory
is defined as a sequence of robot poses S = {sk|k =
1, 2, . . . , n} where sk = [xk, yk, βk]

⊤ denotes the robot
pose at time k, with xk and yk denoting the 2D position
of the robot and βk denoting the orientation of the robot.
The TEB planner then augments the trajectory with positive
time intervals ∆Tk, k = 1, 2, . . . , n. The sequence of robot
poses and time intervals are then joined to form the parameter
vector b = [s1,∆T1, s2,∆T2, s3, . . . ,∆Tn−1, sn]

⊤. TEB
solves the non-linear optimization task defined as:

V ∗(b) = min
b

n−1∑
k=1

∆T 2
k , (11)

which is subject to several constraints defined as equality
and inequality constraints.

a) Non-holonomic constraint: An equality constraint
vk enforces the kinematic constraints of the robot. This
non-holonomic constraint can be interpreted geometrically to
assume consecutive poses sk and sk+1 must share a common
arc of constant curvature [22]. The angle ϑk between pose
sk and direction dk,k+1 = [xk+1 − xk, yk+1–yk, 0]

⊤ must
be equal to angle ϑk+1 at pose sk+1, with ϑk = ϑk+1 which
can be replaced with:cos(βk)

sin(βk)
0

× dk,k+1 = dk,k+1 ×

cos(βk+1)
sin(βk+1)

0

 , (12)

and thus the resulting equality constraint applied to the
optimization task in (11) is given by:

hk(sk+1, sk) =

cos(βk)
sin(βk)

0

+

cos(βk+1)
sin(βk+1)

0

× dk,k+1.

(13)
b) Velocity and acceleration constraints: Additionally,

limitations of the linear and angular velocities and accelera-
tions are applied. First, the linear and angular velocities are
approximated between two consecutive poses sk and sk+1:

vk = ∆T−1
k ∥[xk+1 − xk, yk+1 − yk]

⊤∥γ(sk, sk+1), (14)

ωk = ∆T−1
k (βk+1 − βk), (15)

where γ(sk, sk+1) is a sign extraction function which is
approximated by a smooth sigmoidal approximation that
maps to the interval [−1, 1]:

γ(sk, sk+1) ≈
κ⟨qk,dk,k+1⟩

1 + |κ⟨qk,dk,k+1⟩|
. (16)

Next, the accelerations are approximated in a similar manner
to the velocities between consecutive poses:

ak =
2(vk+1 − vk)

∆Tk +∆Tk+1
; ω̇k =

2(ωk+1 − ωk)

∆Tk +∆Tk+1
. (17)

Finally, the velocity and acceleration constraints are applied
to (11) as:

vk(sk+1, sk,∆Tk) =

[
vmax − |vk|
ωmax − |ωk|

]
,

αk(sk+2, sk+1, sk,∆Tk+1,∆Tk) =

[
amax − |ak|
ω̇max − |ω̇k|

]
.

c) Obstacle avoidance: The local planner considers
obstacles, Ol, l = 1, 2, ..., R, as simply-connected regions
in the form of points, circles, polygons, and lines in R2. To
ensure a minimum separation ρmin between pose sk and all
obstacles, the inequality constraint applied to (11) is:

ok(sk) = [ρ(sk,O1), ρ(sk,O2), ..., ρ(sk,OR)]
⊤

−[ρmin, ρmin, ..., ρmin]
⊤,

(18)

where ρ is the minimal Euclidean distance between the
obstacle and the robot pose.

The nonlinear task (11) is reformulated into an approxi-
mate nonlinear least-squares optimization problem for better
computational efficiency. With the constraints applied to the
approximated objective function as described in [23]. The
kinematic equality constraint hk is expressed as:

ϕ(hk, σh) = σh∥hk∥22, (19)

and the inequality constraint vk is approximated as:

χ(vk, σv) = σv∥min{0,vk}∥22, (20)

where σi, σv are scalar weights and the min operator is
applied row-wise and with constraints αk and ok being ap-
proximated in an identical manner. The overall optimization
problem is approximated with the objective function:

b∗ = argminB\{s1,sn} Ṽ (b), (21)

Ṽ (b) =

n−1∑
k=1

[∆T 2
k + ϕ(hk, σh) + χ(rk, ok) + χ(vk, σv)

+ χ(αk, σα) + χ(ok, σo)] + χ(αn, σα). (22)

This optimization problem is solved using a variant of the
Levenberg–Marquardt algorithm implemented in the open-
source graph optimization framework g2o [24]. As described
in [19], the Timed-Elastic-Band planner further improves
the method by optimizing several of these trajectories from
distinctive topologies in parallel to search for the global
minimum of (11) respecting (21).

The final output from the Timed-Elastic-Band planner is
sequences of velocity commands to achieve the globally
optimal trajectory b∗ from (21). These velocity commands
are sent to Digit’s default low-level controller provided by
Agility Robotics.

Fig. 4. Experiment IV-A.1) A differential drive robot navigates to a goal in a static environment. As unknown obstacles are
discovered, re-planning occurs. Midway through execution, a new goal is provided and is reached.

Fig. 5. Experiment IV-A.2) A differential drive robot navigates to a goal in a dynamic environment. As the unknown dynamic
obstacles is discovered, the robot stops, begins to reverse, and then plans around the obstacle. Once the dynamic obstacle
has passed, the robot begins to navigate forward and successfully reaches the goal.

IV. RESULTS

This section presents the simulation results of the proposed
approach and the experimental validation with Digit in
dynamic and unknown environments1.

A. Simulation Experiments

The framework is initially validated in simulation. In
experiments shown in Fig. 4 and Fig. 5, the red and blue
circles represent the first and second goals. Black grid cells
are obstacles in the global map, purple and blue grid cells
are obstacles and inflated cells in the local map, respectively.
The red arrow is the current estimated odometry. The red
path and green paths are the global path and local trajectory,
respectively. The purple path shows the robot’s traveled path.

1) Static, unknown environment: As shown in Fig. 4, a
6.0 m × 6.0 m simulated environment contains nine static,
cylindrical obstacles with radius 0.15 m evenly spaced apart.
At t = 0, an initial goal position is selected. From t = 0 to
t = 9 the robot navigates along the path until an obstacle is
discovered obstructing the current trajectory, at which point
the global path and local trajectory are quickly re-planned to
account for the new obstacle. While continuing to navigate
to the first goal, a new goal position is given. The framework
quickly re-plans and begins navigating to the new goal. At
t = 24, a blocking obstacle is again detected and re-planning
occurs. From t = 24 to t = 50 the robot successfully
executes the trajectory and reaches the goal position.

1Experiment recordings are shown in the following video:
https://www.youtube.com/watch?v=WzHejHx-Kzs.

2) Dynamic, unknown environment: The second simu-
lated experiment occurs in the same environment as the
previous experiment, except a dynamic obstacle has been
added. At t = 0, an initial goal position is selected. The robot
begins to navigate until t = 6 when the dynamic obstacle
comes into view and blocks the path. The planners attempt
to re-plan around the obstacle but determine the current path
is untraversable. The robot stops and begins to reverse until
t = 12 when a viable trajectory is discovered. At t = 14, the
robot stops reversing and begins to execute the trajectory as
the dynamic obstacle has passed. From t = 14 to t = 30,
the robot executes the trajectory and reaches the goal.

B. Hardware Experiments

The navigation framework computation is executed on
an external desktop using an AMD Ryzen 5800X CPU
and connected through a TCP connection to Digit. In this
work, two hardware experiments were conducted indoors:
1) Planning in a static environment and 2) Planning in a
dynamic environment. Each test is deemed successful once
the Digit robot is able to navigate collision-free from the
start position to the goal position within a 0.2 m final goal
position tolerance and 0.2 rad final goal orientation tolerance.
In experiments shown in Fig. 6 and Fig. 7 the solid red circle
represents the goal position. The red and blue hollow circles
represent the first and second obstacles, the second being a
dynamic obstacle in Fig. 7. Black grid cells are obstacles in
the global map, purple and blue grid cells are obstacles and
inflated cells in the local map, respectively. The red arrow is
the current estimated odometry, and the green circle shows

https://www.youtube.com/watch?v=WzHejHx-Kzs

Fig. 6. Experiment (IV-B.1) Digit navigating to a goal in a static environment. Digit is able to successfully navigate around
static obstacles blocking the initial trajectory and safely reaches the goal position.

Fig. 7. Experiment (IV-B.2) Digit navigating to a goal in a dynamic environment. During navigation, a dynamic obstacle
is discovered and as the obstacle begins to move, the trajectory deforms to maintain a collision free path. The dynamic
obstacle finally comes to a rest and Digit is able to successfully navigate around the obstacles and safely reach the goal
position.

the robots current position. The red path and green paths are
the global path and local trajectory, respectively. The purple
path shows the robot’s traveled path.

1) Static environment: As shown in Fig. 6, a 10.0 m ×
8.0 m environment contains two static 0.5 m × 1.0 m and
1.0 m × 0.5 m obstacles. At t = 0 a goal position is given to
Digit and the robot begins to rotate to safely avoid the first
obstacle. Digit continues to travel forward between t = 0
and t = 11 at which point Digit begins to rotate to avoid
the second obstacle. Digit continues along the generated
trajectory until the robot safely reaches the goal position at
t = 34.

2) Dynamic environment: The second experiment is con-
ducted in the same environment as the previous experiment,
except the second static obstacle has been replaced with a
dynamic obstacle. At t = 0 a goal position is given to Digit.
Initially, the dynamic obstacle is not visible to Digit due to
being obscured by the first obstacle. Digit begins to execute
the generated trajectory and at t = 6 the dynamic obstacle
is detected. At this moment, the dynamic obstacle begins
to navigate across the currently planned trajectory. As the
obstacle moves in the environment, the planned trajectory
begins to deform to maintain a collision-free path, which
can be seen at t = 11. Between t = 11 and t = 15, Digit
begins to slow to a stop as the dynamic obstacle continues to
move across the robots path. At t = 15, the obstacle comes
to a rest and Digit is able to begin executing a collision-free
path to the goal. Digit is able to successfully execute the

trajectory between t = 15 and t = 38 and safely reaches the
goal position at t = 38.

V. CONCLUSIONS

In this work, we have presented a real-time navigation
framework for bipedal robots in dynamic environments.
Successful experiments were conducted in both simulation
and hardware.

While the proposed navigation framework was shown to
successfully execute in complex environments, there exist
several limitations. The current sensor suite configuration
results in blind spots on the left and right sides of the
robot. This prevents the navigation framework from quickly
reacting to dynamic obstacles that move in these blind spots.
In future work, a more robust sensor suite providing 360o

sensor coverage would allow for better dynamic obstacle
reactions. Additionally, the use of 2D layered costmaps
limits the navigable environments to only flat 2D terrains.
While this is sufficient for many complex environments, it
is often desirable to navigate through inclines, stairs, and
uneven terrain. Using a mapping and planning framework
that can utilize 3D information would allow for more robust
navigation in complex 3D terrains. Finally, although the local
planner is able to generate robust trajectories, the assumption
of differential drive kinematic constraints limits the capa-
bilities of bipedal robots. An extension to omnidirectional
locomotion would allow for better utilization of the unique
capabilities of bipedal robots.

REFERENCES

[1] J. Chestnutt, K. Nishiwaki, J. Kuffner, and S. Kagami, “An adaptive
action model for legged navigation planning,” in 2007 7th IEEE-RAS
International Conference on Humanoid Robots. IEEE, 2007, pp.
196–202.

[2] W. Huang, J. Kim, and C. G. Atkeson, “Energy-based optimal step
planning for humanoids,” in 2013 IEEE International Conference on
Robotics and Automation. IEEE, 2013, pp. 3124–3129.

[3] A. Hornung, A. Dornbush, M. Likhachev, and M. Bennewitz, “Any-
time search-based footstep planning with suboptimality bounds,” in
2012 12th IEEE-RAS International Conference on Humanoid Robots
(Humanoids 2012). IEEE, 2012, pp. 674–679.

[4] J. Garimort, A. Hornung, and M. Bennewitz, “Humanoid navigation
with dynamic footstep plans,” in 2011 IEEE International Conference
on Robotics and Automation. IEEE, 2011, pp. 3982–3987.

[5] D. Kanoulas, A. Stumpf, V. S. Raghavan, C. Zhou, A. Toumpa,
O. Von Stryk, D. G. Caldwell, and N. G. Tsagarakis, “Footstep
planning in rough terrain for bipedal robots using curved contact
patches,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA), 2018, pp. 4662–4669.

[6] N. Perrin, O. Stasse, F. Lamiraux, and E. Yoshida, “Weakly collision-
free paths for continuous humanoid footstep planning,” in 2011
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2011, pp. 4408–4413.

[7] S. Dalibard, A. El Khoury, F. Lamiraux, A. Nakhaei, M. Taı̈x, and J.-
P. Laumond, “Dynamic walking and whole-body motion planning for
humanoid robots: an integrated approach,” The International Journal
of Robotics Research, vol. 32, no. 9-10, pp. 1089–1103, 2013.

[8] L. Baudouin, N. Perrin, T. Moulard, F. Lamiraux, O. Stasse, and
E. Yoshida, “Real-time replanning using 3d environment for humanoid
robot,” in 2011 11th IEEE-RAS International Conference on Hu-
manoid Robots. IEEE, 2011, pp. 584–589.

[9] T. Nishi and T. Sugihara, “Motion planning of a humanoid robot in
a complex environment using rrt and spatiotemporal post-processing
techniques,” International journal of humanoid robotics, vol. 11,
no. 02, p. 1441003, 2014.

[10] P. Michel, J. Chestnutt, J. Kuffner, and T. Kanade, “Vision-guided
humanoid footstep planning for dynamic environments,” in 5th IEEE-
RAS International Conference on Humanoid Robots, 2005. IEEE,
2005, pp. 13–18.

[11] A.-C. Hildebrandt, M. Klischat, D. Wahrmann, R. Wittmann,
F. Sygulla, P. Seiwald, D. Rixen, and T. Buschmann, “Real-time path
planning in unknown environments for bipedal robots,” IEEE Robotics
and Automation Letters, vol. 2, no. 4, pp. 1856–1863, 2017.

[12] K. Nishiwaki, J. Chestnutt, and S. Kagami, “Autonomous navigation
of a humanoid robot over unknown rough terrain using a laser range
sensor,” The International Journal of Robotics Research, vol. 31,
no. 11, pp. 1251–1262, 2012.

[13] Z. Li, J. Zeng, S. Chen, and K. Sreenath, “Vision-aided autonomous
navigation of underactuated bipedal robots in height-constrained en-
vironments,” 2021.

[14] S. Pütz, J. Santos Simón, and J. Hertzberg, “Move base flex a highly
flexible navigation framework for mobile robots,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2018, pp. 3416–3421.

[15] M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, vol. 24, no. 6,
p. 381–395, Jun 1981.

[16] D. V. Lu, D. Hershberger, and W. D. Smart, “Layered costmaps
for context-sensitive navigation,” in 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2014, pp. 709–715.

[17] J. Zhang and S. Singh, “Low-drift and real-time lidar odometry and
mapping,” Autonomous Robots, vol. 41, no. 2, pp. 401 – 416, February
2017.

[18] S. Koenig and M. Likhachev, “D*lite.” 01 2002, pp. 476–483.
[19] C. Rösmann, F. Hoffmann, and T. Bertram, “Integrated online trajec-

tory planning and optimization in distinctive topologies,” Robotics and
Autonomous Systems, vol. 88, pp. 142–153, 2017.

[20] R. B. Rusu and S. Cousins, “3d is here: Point cloud library (pcl),”
in 2011 IEEE International Conference on Robotics and Automation,
2011, pp. 1–4.

[21] R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision, 2nd ed. New York, NY, USA: Cambridge University Press,
2003.

[22] C. Rösmann, W. Feiten, T. Wösch, F. Hoffmann, and T. Bertram, “Tra-
jectory modification considering dynamic constraints of autonomous
robots,” in ROBOTIK, 2012.

[23] J. Nocedal and S. J. Wright, Numerical optimization: with 85 illustra-
tions. Cham: Springer International Publishing.

[24] R. Kümmerle, G. Grisetti, H. M. Strasdat, K. Konolige, and W. Bur-
gard, “G2o: A general framework for graph optimization,” 2011 IEEE
International Conference on Robotics and Automation, pp. 3607–3613,
2011.

	Introduction
	Digit Perception, Mapping, and Localization
	Perception
	Mapping
	Global Map
	Local Map

	Localization

	Real-Time Motion Planning
	D* Lite global planner
	Timed-Elastic-Band local planner

	Results
	Simulation Experiments
	Static, unknown environment
	Dynamic, unknown environment

	Hardware Experiments
	Static environment
	Dynamic environment

	Conclusions
	References

