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Abstract— This paper presents a method for achieving stable
periodic walking, consisting of phases of single and double
support, on underactuated walking robots by embedding Spring
Loaded Inverted Pendulum (SLIP) dynamics. Beginning with
a SLIP model, the dynamics are stabilized to a constant
energy level and periodic walking gaits are found; an equality
constraint on torque can be used to shape the dynamics of the
full-order robot to obey the corresponding SLIP dynamics. To
transition these gaits to full-order robots, the essential elements
of SLIP walking gaits, i.e., the swing leg touchdown angle,
are utilized to synthesis control Lyapunov functions that result
in inequality constraints in torque. Finally, the desired force
interactions with the environment as dictated by SLIP dynamics
are utilized to obtain inequality constraints in the reaction
forces. Combining these equality and inequality constraints
results in a multi-objective quadratic program based controller
that is implemented on a multi-domain hybrid system model
of an underactuated bipedal robot. The end result is stable
periodic walking on the full-order model that shows remarkable
similarity to the SLIP gait from which it was derived.

I. INTRODUCTION

The Spring Loaded Inverted Pendulum (SLIP) model
provides a low-dimensional representation of locomotion
inspired by biological principles [12], [7]. As a result of
this biological motivation, the ability to realize SLIP-like
walking gaits on bipedal robots promises to result in natural,
efficient and robust locomotion. This is evidenced by the
classic work by Raibert on hopping robots [18], which has
since motivated the study of walking and running in robotic
systems with simple SLIP models [2], [20]. Ultimately, the
fundamental limitation in realizing the benefits of SLIP in-
spired locomotion is the low-dimensional nature of the SLIP
model, and the difficulty of realizing this low-dimensional
behavior on full-order high-dimensional walking robots.

This paper presents a method for realizing SLIP dynamics
directly on full-order underactuated walking robots, modeled
as multi-domain hybrid systems, with the end result being the
automatic synthesis of stable walking gaits that qualitatively
display SLIP-like behavior. This process of embedding SLIP
gaits into full-order robotic systems is inherently difficult
due to the complexity of the multiple control tasks that must
be simultaneously achieved. In particular, the dynamics of
the Center of Mass (CoM) of the full-order system must
be shaped so as to evolve according to the SLIP dynamics.
Additionally, virtual constraints must be synthesized so as
to capture the fundamental assumptions of SLIP walking
gaits, e.g., a specific touch down angle of the swing leg
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Fig. 1: The Spring Loaded Inverted Pendulum Walking Gait.

must be achieved. Finally, the interaction of the robot
with the environment (expressed as reaction forces) must
be controlled directly to obtain SLIP-like behavior. The
difficulty of realizing these ideas on a full-order robot is
that they define a large set of control objectives that are
difficult to simultaneously achieve—especially in the context
of underactuation.

In order to balance the multiple control objectives neces-
sary to achieve SLIP-like locomotion on full-order bipedal
robots, this paper presents a novel control methodology
based upon multi-objective quadratic programs (QP). The
role of QPs in the control of walking robots was first
studied in [5], where a novel class of control Lyapunov
functions (CLFs)—rapidly exponentially stabilizing CLFs—
were introduced and shown to guarantee stable walking gaits.
The fact that CLFs can be naturally realized as controllers
through QPs [9] motivated the use of QPs in the context
of walking robots [10]. These ideas were extended in [6],
[16] to simultaneously achieve multiple control objectives—
expressed through CLFs—together with desired reaction
forces. Motivated by these constructions, all of the salient
elements of SLIP gaits are encoded as equality and inequality
constraints that can be simultaneously achieved via a QP
based controller: the dynamics of the COM are shaped to be
the dynamics of an energy stabilized SLIP model through
equality constraints; virtual constraint based objectives yield
inequality constraints through CLFs; and ground reaction
forces are regulated to agree with the SLIP model via
additional inequality constraints. The end result is a stable
walking gait for an underactuated robot, consisting of phases
of single and double support, that is directly obtained from
an energy stabilized SLIP gait.

Existing work on underactuated dynamic robotic locomo-
tion has successfully utilized the notion of hybrid zero dy-
namics (HZD); this methodology utilizes the hybrid nature of



walking robots in order to define virtual constraints that are
invariant through impacts [22]. HZD has been successfully
applied to a large collection of bipedal robots to achieve
walking, including MABEL [21], AMBER [3], and the robot
of interest in this paper: ATRIAS [19]. Notably, in [14],
the authors utilized HZD and human-inspired control [3]
to achieve SLIP-inspired locomotion on ATRIAS [1]. While
HZD gives formal guarantees on generating stable walking
gaits, it requires a priori nonlinear optimization to find stable
walking gaits; this is time consuming and convergence can
be an issue for complex robots. Methodologies from HZD
were leveraged to obtain results on formally embedding
SLIP dynamics into more complex robots [17] for single-
leg hoppers. Only recently has work considered extending
SLIP gaits directly to full-order robots [11], yet this was
done in the context of full actuation—greatly simplifying
the problem—and the hybrid system model of a bipedal
robot was not considered. Therefore, this work differentiates
itself from existing results in the following notable ways:
underactuation is considered, phases of single and double
support are utilized and modeled via a multi-domain hybrid
system model, and no a priori optimization is needed (as in
the case of HZD) to generate stable periodic gaits.

II. ROBOT MODEL

This section describes the hybrid model of the robot
of interest–ATRIAS–in detail. ATRIAS is a human-scale,
underactuated bipedal robot built at the Oregon State Uni-
versity Dynamic Robotics Laboratory. Designed to match
key characteristics of the SLIP model, ATRIAS places all
heavy elements, such as actuators, at the torso and drives
lightweight four bar mechanisms on each leg which terminate
in point feet through series compliant actuators [13]. This en-
ables ATRIAS to achieve agile, efficient and highly dynamic
maneuvers [1]. In this paper, we only consider the rigid part
of the robot assuming the joints are directly controlled.

Hybrid System Model. Due to the two different phases
of the SLIP walking gait and the discrete dynamics of the
system at impacts, the mathematical framework of multi-
domain hybrid system is used for this bipedal robot [14]. For
walking with point feet, the hybrid model discrete domains
are limited to only the double and single support phase (see
Fig. 2).

Considering the configuration space given by the gener-
alized coordinates q = {px, py, qT , q1s, q2s, q1ns, q2ns}T ∈
Q ⊂ R2×SO(2)×Qb with n = dim(Q), as shown in Fig. 3
(a), the formal hybrid model for the two-domain locomotion
is given by the tuple:

H C = (Γ,D,U , S,∆,FG), (1)

where
• Γ = (V,E) is the directed graph specific to this hybrid

system, with vertices V = {ss,ds}, where ss and ds
represent single and double support phases, respectively,
and edges E = {e1 = {ss→ ds}, e2 = {ds→ ss}},

• D = {Dss,Dds} is a set of two domains,

Dss

Sss→ds

Dds

Sds→ss

Fig. 2: The directed graph of single/double support phase.

• U = {Uss,Uds} is a set of admissible controls,
• S = {Sss→ds, Sds→ss} is a set of guards,
• ∆ = {∆ss→ds,∆ds→ss} is a set of reset maps,
• FG = {(fss, gss), (fds, gds)} is a control system on

each Dv for v ∈ V .
The two domains {Dss,Dds} are depicted in Fig. 2. The

remainder of this section will be focused on how to construct
the individual elements of the two-domain hybrid system.
Domains and Guards. In the double support domain, the
non-stance foot must remain on the ground. A transition from
double support to single support occurs when the normal
reaction force on the non-stance foot crosses zero. Therefore,
the double support domain and guard are given by:

Dds = {(q, q̇, u) : hns(q) = 0, F yns(q, q̇, u) ≥ 0}, (2)
Sds→ss = {(q, q̇, u) : hns(q) = 0, F yns(q, q̇, u) = 0}, (3)

where hns(q) is the height of the non-stance foot, and F yns
is the normal contact force on the non-stance foot, which
will be defined later in the section. Since there is no impact
involved for the transition from double support to single
support, the states of the robot remain the same. Therefore
the reset map from double support to single support is the
identity map: ∆ds→ss = I.

For the single support domain, the non-stance foot is above
the ground. When the non-stance foot strikes the ground a
guard is reached and the transition to the next domain takes
place. Hence, the single support domain and guard has the
following structure:

Dss = {(q, q̇, u) : hns(q) ≥ 0, F yns(q, q̇, u) = 0}, (4)

Sss→ds = {(q, q̇) : hns(q) = 0, ḣns(q, q̇) < 0}. (5)

Impacts occur when the non-stance foot hits the ground.
The post-impact states, computed in terms of pre-impact
states, are given by [14]:

∆ss→ds(q, q̇) =

[
R∆qq
R∆q̇(q)q̇

]
, (6)

where R is the relabeling matrix required to swap the stance
and non-stance legs after impacts.
Model Dynamics. The dynamics of the system can be ob-
tained from the Eular-Lagrange equation of the “unpinned”
model, so that the holonomic constraints are used to describe
the interaction between the robot and the world for different



domains. Consider the holonomic constraints for a domain
v ∈ V , hv(q) = 0 with hv(q) ∈ Rnvc , where nvc is the
number of constrained degrees of freedom fo the domain v.
Then the dynamics of the model can be written as,

D(q)q̈ +H(q, q̇) = Bu+ JTv (q)Fv, (7)

where D(q) is the inertia matrix, H(q, q̇) is the vector
containing the Coriolis and gravity terms, B ∈ Rn×nu is
the distribution matrix for the actuators u ∈ U ⊂ Rnu
where nu is the number of actuators in the system, Jv(q)
is the Jacobian of the holonomic constraints for a domain
v ∈ V and Fv ∈ Rnvc are the reaction forces due to the
holonomic constraints. For the double support domain, the
reaction forces consist of the horizontal and vertical reaction
forces on both feet, i.e., Fds = (Fs, Fns) ∈ R4, and for
the single support domain, the reaction forces include only
the forces on the stance foot, Fss = Fs ∈ R2. For the
constraint forces to be valid, the following constraints need
to be satisfied [22], [16],

J̇v(q, q̇)q̇ + Jv(q)q̈ = 0, (8)
RvFv ≥ 0, (9)

where RvFv corresponds to a set of admissible constraints
that guarantee the physical validity of the model, e.g. positive
normal force and friction cone. To formulate the above
constraints in the quadratic program, which will be explained
in detail later in the paper, we write (7) as

D(q)q̈ +H(q, q̇) =
[
B JTv (q)

]︸ ︷︷ ︸
B̄v(q)

[
u
Fv

]
,︸ ︷︷ ︸

ūv

(10)

with ūv ∈ Rnu+nvc . With x = [q, q̇]T as the states of the
system, the affine control system is defined based on (10),

ẋ = f(x) + gv(x)ūv, (11)

where

f(x) =

[
q̇

−D−1(q)H(q, q̇)

]
, gv(x) =

[
0

D−1(q)B̄v(q)

]
.

III. EMBEDDING OF ES-SLIP DYNAMICS

In this section, we begin by briefly discussing the SLIP
walking model and stable walking gait generation. Then we
present the motivation of the dynamics embedding controller
for the full order dynamics. The remainder of the section
focuses on the derivation of desired reduced order dynamics
by introducing the energy-stabilizing controller.
SLIP Model. The Spring Loaded Inverted Pendulum (SLIP)
model provides a low-dimensional representation of locomo-
tion by utilizing an energy-conserving spring mass model. As
such, it can provide an approach for generating efficient gaits
on bipedal robots [8], [20]. The spring-mass model consists
of a point mass m supported by two massless linear spring
legs with fixed rest length r0 and stiffness k. The spring
forces only act on the mass while in contact with the ground
and cannot apply forces during swing. Letting pcom be the
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Fig. 3: The coordinate configuration of the robot.

position of the point mass with respect to a fixed origin, the
dynamics of the SLIP model is given as follows,

p̈com =
1

m
(FR(r) + FL(r))− g, (12)

where FR and FL are the spring forces of the legs and g is
the gravitational vector.

The SLIP walking model consists of two different dynam-
ical phases: single support and double support, identified by
the contact constraints of the system. A stable walking gait
can be obtained by selecting a proper “touch down” angle,
αTD, as shown in Fig. 1. Since the legs are assumed to
be massless and controlling them does not require any net
actuator work, the system conserves energy. The dynamic
stability of a gait is verified through the Poincaré return map
for a single step. To be dynamically stable, the magnitudes
of all the eigenvalues of the Jacobian matrix of the discrete
Poincaré map must be less than 1.

In this paper, we use model parameters that roughly ap-
proximate the low-dimensional dynamics of ATRIAS. Stable
walking gaits for the given parameters are generated by
utilizing the method introduced in [20], and the desired
“touch down” angles are determined correspondingly.
Dynamics Embedding. The motivation of the dynamics em-
bedding controller comes from the input/output linearization
of a nonlinear system. Rather than defining reference trajec-
tories for the system, we can enforce the output dynamics of
the system to be the dynamics of the reduced order model,
such that the former exhibits similar dynamical behavior to
the latter. In particular, to achieve the SLIP dynamics on
ATRIAS, let yc = hc(q) be the CoM position of ATRIAS.
Differentiating it twice yields

ÿc = L2
fhc(q, q̇) + LgvLfhc(q, q̇)ūv, (13)

where L represents the Lie derivative. In the context of
feedback linearization, one would pick the output dynamics
ÿc = µc as a stable linear system such that a corresponding



feedback control law drives the outputs to zero. If, instead,
the goal is to drive the output dynamics to a reduced order
nonlinear system, e.g. the SLIP model, picking

µc =
1

m
(FR(q, q̇) + FL(q, q̇))− g, (14)

yields ÿc = p̈com. To achieve this objective, the controller is
required to satisfy the following equality constraint

ASLIPūv = (−L2
fhc(q, q̇) + p̈com), (15)

where ASLIP = LgvLfhc(q, q̇) is the decoupling matrix.
With this constraint, the controller renders the output dy-
namics exactly as the corresponding SLIP dynamics.

SLIP Dynamics. To achieve the above goal, we need to
explicitly derive the expression for the SLIP dynamics in
terms of ATRIAS’s states. Consider the whole system as
a point mass, m, at its CoM position, and assume virtual
massless spring legs attached to the point mass, as shown
in Fig. 3. We use the polar coordinates for this purpose; let
Xv = (rv, θv, ṙv, θ̇v) be the states of the SLIP model for
domain v ∈ V . For double support phase, we set the front
leg as the stance leg and consequently the stance toe as the
origin of the coordinates. Then, the desired SLIP dynamics
are given in terms of robot states by

r̈ds =
k

m
(∆rs + ∆rn cos(θs − θn)) + rsθ̇

2
s − g sin θs, (16)

θ̈ds = −
k
m (∆rn sin(θs − θn)) + 2ṙsθ̇s + g cos θs

rs
, (17)

where ∆rs = (r0− rs), ∆rn = (r0− rn), rs and θs are the
stance virtual leg length and leg angle, and rn and θn are the
non-stance virtual leg length and leg angle respectively, as
shown in Fig. 3 (b). Note that the virtual leg lengths and leg
angles are nonlinear functions of the states (q, q̇) of ATRIAS.

Since only the stance leg forces act on the system for the
single support domain, the terms due to the non-stance leg
spring force will disappear in the dynamics equation. The
governing equations of motion are given as

r̈ss =
k

m
(∆rs + rsθ̇

2
s − g sin θs), (18)

θ̈ss = − 1

rs
(2ṙsθ̇s + g cos θs). (19)

It is important to note that the above equations are obtained
under the assumption of the energy-conservative SLIP model.
However, the total energy of the actual robot system is not
constant over a gait, which requires compensation through
the input of energy to stabilize the system.

Energy-Stabilized Controller. The existence of compliant
legs in the SLIP model ensures the total energy is conserved
throughout the impacts. However, the plastic impacts of the
actual robot cause energy loss in the system. In [11], an
energy-stabilizing controller is introduced to compensate for
the energy loss of the system by adding an additional com-
pensation force to the SLIP dynamics discussed previously.
Let Ed be the desired energy level and E the actual energy

of the reduced order system, then the compensating forces
in the radial and angular directions are given by

F rc = −kc
ṙs

ṙ2
s + r2

s θ̇
2
s

∆E, F θc = −kc
rsθ̇s

ṙ2
s + r2

s θ̇
2
s

∆E, (20)

where kc > 0 is positive gain and ∆E = E − Ed. Note
that the direction of the compensating force is always in the
opposite direction of the center of mass velocity. Intuitively,
this force is trying to impede the velocity changes due to the
energy loss to stabilize the total energy of the system to the
desired level.

With these compensating forces in hand we modify the
desired SLIP dynamics by adding the following energy-
stabilizing controller to obtain the Energy-Stabilized SLIP
(ES-SLIP) dynamics for each domain v ∈ V :

¨̃rv = r̈v + F rc /m,
¨̃
θv = θ̈v + F θc /m, (21)

where F rc and F θc are the radial and angular direction
components of the Energy-Stabilized forces in (20).

It is possible to easily implement ES-SLIP dynamics on
fully-actuated robots. However, in the case of underactuated
robots, it is difficult to track the dynamics of ES-SLIP model
precisely due to the underactuation. Becuase the ES-SLIP
dynamics determine only the motion of the CoM position,
other control objectives must be determined in addition to
the dynamics embedding controller.

IV. TORSO AND NON-STANCE LEG CONTROL

In order to fully regulate the motion of the robot, we
also need to determine additional control tasks, such as the
torso and non-stance leg motion. We begin by introducing
additional control tasks for the system in general, then
specifying tasks for each domain independently.
RES-CLF Construction. For each domain, v ∈ V , we
consider the outputs yv : Q → Rn` , where n` is the
number of outputs of the system, with the objective of driving
yv(q) → 0. Since the outputs being considered are only
functions of the configuration of the robot, differentiating
the outputs twice yields

ÿv = L2
fy(q, q̇)︸ ︷︷ ︸
(L2
f )v

+LgvLfy(q, q̇)︸ ︷︷ ︸
Av

ūv. (22)

Assume that the decoupling matrix, Av , is well-defined
and has full rank [15], i.e., that yv satisfies the vector relative
degree condition (normally vector relative degree two) and
consists of linearly independent entries, then we may produce
a feedback control law,

ūv = A+
v

(
−(L2

f )v + µv
)
, (23)

that realizes ÿv = µv , where A+
v is the pseudo inverse of the

decoupling matrix. Next, one chooses µv so that the resulting
output dynamics are stable. Letting ηv = (yv, ẏv) ∈ R2n` ,
the linear output dynamics can be written as

η̇v =

[
0 I
0 0

]
︸ ︷︷ ︸

Fv

ηv +

[
0
I

]
︸ ︷︷ ︸
Gv

µv. (24)



Then in the context of this control system, we consider
the continuous time algebraic Riccati equations (CARE):

FTv Pv + PvFv − PvGvGTv Pv +Qv = 0, (25)

for Qv = QTv > 0 with solution Pv = PTv > 0. One can use
Pv to construct a RES-CLF that can be used to exponentially
stabilize the output dynamics at a user defined rate of 1

ε (see
[4], [5]). In particular, define

V εv (ηv) = ηTv I
εPvI

ε︸ ︷︷ ︸
P εv

ηv, with Iε = diag(
1

ε
I, I), (26)

wherein it follows that:

V̇ εv (ηv) = LFvV εv (ηv) + LGvV εv (ηv)µv,

with

LFvV εv (ηv) = ηTv (FTv P
ε
v + P εvFv)ηv, (27)

LGvV εv (ηv) = 2ηTv P
ε
vGv.

With the goal of exponentially stabilizing the ηv to zero,
we wish to find µv such that,

LFvV εv (ηv) + LGvV εv (ηv)µv ≤ −
γ

ε
V εv (ηv),

for some γ > 0. In particular, it allows for specific feedback
controllers, e.g., the min-norm controller, which can be stated
as the closed form solution to a quadratic program (QP). See
[6], [5] for the further information.

Recalling that Avūv = −(L2
f )v + µv , it follows that:

µTv µv = ūTvATvAvūv + 2(L2
f )TvAvūv + (L2

f )Tv (L2
f )v,

which allows for reformulating the QP problem in terms of
ūv instead of µv , so that additional constraints on torques
or reaction forces can be directly implemented in the formu-
lation. To achieve an optimal control law, we can relax the
CLF constraints and penalize this relaxation. In particular,
we consider the following modified CLF-based QP in terms
of ūv and a relaxation factor δv:

argmin
(ūv,δv)∈Rnu+nvc+1

pvδ
2
v + ūTvATvAvūv + 2(L2

f )TvAvūv

(28)

s.t ÃCLF
v (q, q̇)ūv ≤ b̃CLF

v (q, q̇) + δv (CLF)

where,

ÃCLF
v (q, q̇) :=LGvV εv (q, q̇)Av(q, q̇), (29)

b̃CLF
v (q, q̇) :=− γ

ε
V εv (q, q̇)− LFvV εv (q, q̇)

− LGvV εv (q, q̇)(L2
f )v,

and pv > 0 is a large positive constant that penalizes
violations of the CLF constraint. Note that we use the fact
that ηv is a function of the system states (q, q̇), so the
constraints can be expressed in the term of system states.

The end result of solving this QP is the optimal control
law that guarantees exponential convergence of the control
objective yv → 0 if δv ≡ 0. In the case of sufficiently small

δv , we still achieve exponential convergence of the outputs,
which motivates the minimization of δv in the cost of QP.
Outputs Definition. With the construction of RES-CLFs
in hand, now we specify the outputs for each domain
independently.

Double Support Domain. Since both the stance and non-
stance legs are constrained during the double support domain,
we only consider the torso angle θT in addition to the
dynamics embedding controller. In particular, the outputs for
the double support domain are defined as the error between
the actual outputs and desired outputs,

yds = θT − yH(t, αtorso), (30)

where θT = qT as shown in Fig. 3(b). The desired outputs
are characterized by a smooth function, called the canonical
walking function, defined to be the time solution to a mass-
spring-damper system,

yH(t, α) = e−α4t(α1 cos(α2t) + α3 sin(α2t)) + α5. (31)

Note that the justification of this function form can be found
in [3]. αtorso is the corresponding parameters vector of the
torso output.

Single Support Domain. The robot becomes an underac-
tuated system in the single support domain, which increases
the difficulty of determining the control task for this domain.
First, to move the non-stance leg forward during stance, we
need to define at least two outputs related to the non-stance
leg. Also, ATRIAS has a relatively heavy torso, therefore the
torso angle has to be considered in the outputs to stabilize the
system effectively. Since the system has only four actuators,
we have to loosen the requirement for dynamics embedding,
which we will present in detail in Sect. V. Picking the
nonlinear virtual leg length and leg angle (rn, θn) (see
Fig. 3(b)) that represent the motion of the non-stance leg,
the outputs for the single support domain are defined as

yss =

 θT (q)
rn(q)
θn(q)


︸ ︷︷ ︸

yass

−

 yH(t, αtorso)
yH(t, αrn)
yH(t, αθn)


︸ ︷︷ ︸

ydss

, (32)

where αrn and αθn are the parameter vectors of the non-
stance leg outputs. To ensure a feasible walking gait, those
parameters are chosen such that the touch-down angle re-
quirement from the SLIP gait is achieved. Also αtorso are
picked with the goal of keeping the torso angle at almost a
constant value.

With the definition of the outputs for each domain, the
corresponding RES-CLF constraints for each domain can
be constructed from (29) to formulate the objective of the
torso and non-stance leg control in the quadratic program
discussed in the next section.

V. MAIN CONTROL LAW

In this section, we present a multi-objective quadratic
program based control law which simultaneously embeds
the ES-SLIP dynamics into the full-order robot system



and achieves convergence of the additional control objec-
tives. Control values are obtained through the solution of a
quadratic program with linear constraints. Specifically, we
use the ES-SLIP embedding equation from Sect. III and the
RES-CLF convergence inequality from Sect. IV to construct
constraints which are affine in ūv . Within this framework,
we also include constraints on the full order robot dynamics,
such as ground reaction force constraints and actuator torque
limits.

The main objective of the proposed controller is to drive
the low-dimensional representation computed on the full-
order dynamics to be as close to the ES-SLIP behavior as
possible. To realize this goal, three sub-objectives must be
met: the dynamics of the full-order robot’s CoM must match
those of the ES-SLIP, the domain switches must occur at the
same state, and the swing-leg outputs must match. These
three objectives are encoded into the proposed controller
through linear constraints on ūv .
SLIP Dynamics Constraints. As the robot is fully actuated
in the double support domain, we can completely embed the
ES-SLIP dynamics into the full order system. To achieve the
ES-SLIP dynamics on the full robot dynamics, define the
following equality constraints:

ASLIP
ds (q, q̇) := Lgds

Lfhc(q, q̇), (33)

bSLIP
ds (q, q̇) := ÿcds − L2

fhc(q, q̇)), (34)

where ÿcds := (¨̃rds,
¨̃
θds) are the dynamics of the ES-SLIP

model as defined in (21) in the case of v = ds. and
hc(q, q̇) := (rs, θs) is the CoM position of ATRIAS in polar
coordinates.

As discussed in the previous section, the requirement for
the dynamics embedding must be reformulated for the single
support domain for underactuated robots. Inspired by the
fact that the spring force due to deflection of stance leg
length is the only force, aside from gravity, acting on the
CoM in the SLIP model, we propose an alternative partial
embedding controller in this paper. More specifically, instead
of matching the CoM acceleration in both coordinates, we
only enforce acceleration matching in the radial, i.e. virtual
leg length direction. Therefore, for the single support domain,
define the partial dynamics embedding constraints as follows:

ASLIP
ss (q, q̇) := LgssLfrs(q, q̇), (35)

bSLIP
ss (q, q̇) := ¨̃rss − L2

frs(q, q̇)), (36)

where ¨̃rss is given in (21) in the case of v = ss.
Reaction Force Matching Constraints. During the double
support phase, additional constraints are needed to ensure
that the reaction forces on the two legs are closer to the
corresponding forces of the SLIP model, i.e., so the full order
model displays similar transitions from double support to
single support. Exactly matching the reaction forces on both
legs will over constrain the QP due to the difference between
the full order model and the reduced order model. Hence we
only constrain the reaction forces on the non-stance leg as
it determine the switching behavior of ATRIAS. Letting nσ

be the number of forces that will be matched with a desired
force, where in this case nσ = 2, we define the following
inequality constraints:

|Fns − F SLIP
ns | ≤ σ,

where F SLIP
ns ∈ Rnσ is the equivalent spring force of the non-

stance leg of the SLIP model computed in terms of system
state. With the goal of minimizing σ, we add it to the cost
function of the QP, and define,

ASLIP
F (q, q̇) :=

[
0nσ×(nu+nds

c −nσ) Inσ×nσ
0nσ×(nu+nds

c −nσ) −Inσ×nσ

]
, (37)

bSLIP
F (q, q̇) :=

[
F SLIP
ns

−F SLIP
ns

]
. (38)

Full Robot Model Constraints. In addition to realizing ES-
SLIP behavior in the full-order robot dynamics, the control
values obtained through the quadratic program must also be
in the set of admissible control values, as determined by the
full-order robot model.

Torque Constraints. To ensure that the solution to the
quadratic program is within the feasible limits of the hard-
ware, define the following torque constraints:

Aτv(q, q̇) =

[
Inu×nu 0nu×nvc
−Inu×nu 0nu×nvc

]
, bτv(q, q̇) =

[
τmax1nu
−τmin1nu

]
.

Reaction-Force Constraints. To ensure admissibility of the
reaction forces, such as positive normal forces and a no-
slipping condition, define the constraints based on (9):

AFv (q, q̇) =
[
0nvc×nu −Rv

]
, bFv (q, q̇) = 0nvc . (39)

Holonomic (Ground-Contact) Constraints. To keep the
feet pinned, define the following constraints enforcing (8):

AeqFv (q, q̇) = Jv(q)D(q)−1B̄v(q), (40)
beqFv (q, q̇) = Jv(q)D(q)−1H(q, q̇)− J̇v(q, q̇)q̇.

Quadratic Program Formulation. Utilizing the construc-
tions presented above, we now present the main result of the
paper. The CLF-based QP for each domain is formulated
explicitly formulated as follows:

Double-Support QP. Let (ū∗ds, δ
∗
ds, σ

∗) ∈ Rnds with nds =
1 +nu+ndsc +nσ; the final form of the QP problem for the
double support domain is given as

argmin
(ūds,δds,σ)∈Rnds

pdsδ
2
ds + ūTdsATdsAdsūds (DS-QP)

+ 2(L2
f )TdsAdsūds + pσσ

Tσ

s.t. ASLIP
ds (q, q̇)ūds = bSLIP

ds (q, q̇) (SLIP)

ASLIP
F (q, q̇)ūds ≤ bSLIP

F (q, q̇) + σ (SLIP-Force)

ÃCLF
ds (q, q̇)ūds ≤ b̃CLF

ds (q, q̇) + δds (RES-CLF)

AFds(q, q̇)ūds ≤ bFds(q, q̇) (Contact Forces)
Aτds(q, q̇)ūds ≤ bτds(q, q̇) (Torque)

AeqFds(q, q̇)ūds = beqFds(q, q̇) (Constraints)

where pσ > 0 is a large positive constant that penalizes
violations of the SLIP force constraints.
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Fig. 4: The phase portrait comparison of the CoM dynamics
between the equilibrium SLIP gait and the ATRIAS walking
gait.
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Fig. 5: Comparison of the ground reaction force along the
leg length direction between the ideal SLIP gait and the full-
order robotic model.

Single-Support QP. Let (ū∗ss, δ
∗
ss) ∈ Rnss with nss = 1 +

nu + nssc ; the final form of the QP problem for the double
support domain is given as

argmin
(ūss,δss)∈Rnss

pssδ
2
ss + ūTssATssAssūss + 2(L2

f )TssAssūss

(SS-QP)

s.t. ASLIP
ss (q, q̇)ūss = bSLIP

ss (q, q̇) (SLIP)

ÃCLF
ss (q, q̇)ūss ≤ b̃CLF

ss (q, q̇) + δss (RES-CLF)

AFss(q, q̇)ūss ≤ bFss(q, q̇) (Contact Forces)
Aτss(q, q̇)ūss ≤ bτss(q, q̇) (Torque)

AeqFss(q, q̇)ūss = beqFss(q, q̇) (Constraints)

We apply the feedback control law ūds and ūss obtained
from the result of (DS-QP) and (SS-QP) to the hybrid
control system (11), to get a set of feedback vector fields
F = {f̄ds, f̄ss}, which yields the closed-form hybrid system:

H = (Γ,D, S,∆,F), (41)

where Γ, D, S and ∆ are defined as for H C in (1).

VI. SIMULATION RESULTS

In this section we present the simulation results on
ATRIAS to demonstrate the effectiveness of the control law
obtained from Sect. V. We compare the resulting dynamical
behaviors of ATRIAS with the ones of the SLIP model.
The convergence and existence of the limit cycles show the
stability of the control system with the proposed control law.
Dynamic Matching Behavior. To show the analog between
the SLIP dynamics and ATRIAS’s’ dynamics, we perform a
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Fig. 6: Limit cycle and Energy convergence of the stable
walking gait of four steps obtained in the full order model.

simulation of the full order system starting from the same
post impact states as the equilibrium SLIP gait. Fig. 4 shows
the phase portrait comparison of the CoM dynamics between
both the full and reduced order system. The triangle point
indicates the initial condition of both systems. As shown in
the figure, the dynamics of ATRIAS exactly follow the ones
of the SLIP model during the first double support domain,
then deviate from the SLIP dynamics when switched to the
single support domain, and ultimately converge to a limit
cycle, which can be seen from the density of the dotted
lines, that are different from the SLIP gait limit cycle. That
is because we only apply partial embedding of the dynamics
during the single support domain. Although the ATRIS
gait dynamics do not exactly match the SLIP dynamics,
the overall behavior is very similar to the SLIP gait. The
comparisons of CoM positions and velocities between stable
ATRIAS gait and equilibrium gait over four steps in Fig. 8
show such similarities very clearly.

Enforcing the proposed constraints in (37) ensures that
reaction forces on the non-stance foot match the SLIP spring
forces, as shown in Fig. 5. Note that the plots are shown in
terms of the right and left leg, instead of stance/non-stance
legs. The gray areas in the plots indicate the regions where
the constraints are imposed. It is also interesting to note that
the reaction forces on the stance foot are also very close
to the corresponding virtual spring forces without explicitly
imposing a constraint on their equality.

System Stability. As we noticed in Fig. 4, the CoM states
converge to a limit cycle after approximately 8 steps. The
stability of the control system is further verified with the
existence of the limit cycle. Fig. 6a shows the limit cycle of
the full order system. The simulation results show that the
system states converge to the limit cycle exponentially. The
energy of the full order system also is stabilized with the
use of ES-SLIP. Unlike the SLIP model, the total energy of
the full order system, shown in Fig. 6b, is not conserved as
we can only enforce partial COM dynamics behavior during
underaction. The energy slightly deviates from the desired
energy level during the single support, but still exponentially
converges to the desired level in the double support domain.

A numerical verification using the Poincaré return map is
also performed, with the pre-impact instant as the Poincaré
section of the system. The maximum eigenvalue of linearized



Fig. 7: The walking gait snapshot of ATRIAS over one step.

0 0.5 1 1.5 2

0

0.5

1

1.5

t(s)

x
(m

)

 

 

ATRIAS SLIP

a( ) Horizontal Position

0 0.5 1 1.5 2

0.905

0.91

0.915

0.92

0.925

0.93

t(s)

y
(m

)

 

 

ATRIAS SLIP

b( ) Vertical Position

0 0.5 1 1.5 2
0.65

0.7

0.75

0.8

0.85

0.9

t(s)

ẋ
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Fig. 8: Comparison of CoM position and velocity of stable walking gait vs equilibrium SLIP gait.

dynamics at the Poincaré section is λmax ≈ 0.71 < 1, which
shows the stability of the resulting walking gait. Snapshots
of one step of the stable walking gait is shown in Fig. 7.
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