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Abstract— This paper analyzes the input to state stability
properties of controllers which stabilize hybrid periodic orbits.
Systems that are input to state stable tend to be robust to
modeling and sensing uncertainties. The main contribution of
this paper is in the construction of a class of control Lyapunov
functions that do not just stabilize, but also input to state
stabilize a given hybrid system. Bipedal robotic walking, which
can be naturally modeled as a hybrid system, is analyzed
under this class of controllers. Specifically, we will select a
class of controllers called rapidly exponentially stabilizing control
Lyapunov functions that stabilize bipedal robotic walking;
typically modeled as hybrid periodic orbits. We will show with
simulation results that there exists a subset of this class of
control Lyapunov functions that input to state stabilizes the
given stable periodic orbit; called the input to state stabilizing
control Lyapunov functions.

I. INTRODUCTION

Controllers which operate on the states and model of a
system are highly sensitive to imperfections in real world
implementations. This mismatch is especially relevant in the
field of bipedal robotics and can affect controllers adversely
through imperfect sensing, inaccurate parameter estimation,
input saturations and unmodeled disturbances, to name a few.
The notion of input to state stability (ISS) [16] captures this
uncertainty in a way in which the deviation from the desired
output is a function of the deviation from the stabilizing
control input. Practical difficulties in the realization of non-
linear feedback controllers on robotic systems places heavy
constraints on the ability to increase control gains, and thus
to improve convergence rates and tracking errors.

Control Lyapunov Functions (CLF), popularized by Art-
stein and Sontag [14] during the 1980′s, enable the use of
dynamic programming approaches to obtain optimal control
inputs in real-time controllers [6]. Some examples include
[10], [4], [8]. The translation of this approach to hybrid sys-
tems, especially bipedal robotic systems with underactuation
and discrete jumps (impacts), brings with itself a larger chal-
lenge. For complex systems such as these, investigating input
to state stability (ISS), i.e., studying output perturbations for
all kinds of input perturbations seems like an unavoidable
task. Indeed, input to state stability of hybrid systems has
been studied extensively in literature. Some of the problems
addressed are finding a common Lyapunov function [22],
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Fig. 1: DURUS robot designed by SRI International.

[7] and stability under fast switching [11]. There are also
interesting properties of several hybrid systems with discrete
events that can stabilize continuous unstable dynamics [20],
[23].

Our quest for desirable stabilization properties under un-
certainty lends itself naturally to CLFs. The focal point of
this paper is to study and analyze the ISS properties of CLFs
for stabilizing nonlinear hybrid systems with affine con-
trol inputs; specifically applying to bipedal walking robots.
Through the use of constructions given by Sontag [13], we
show that it is indeed possible to find a subset of input to
state stabilizing CLFs from a given set of CLFs. The core
advantage is the increase in the number of choices from
just one to infinitely many, a necessity for optimal control
approaches. We will consider stable walking gaits, i.e., stable
hybrid periodic orbits and obtain the ISS properties of these
orbits under an ISS controller. Comparisons are also made
between two specific controllers in simulation: Feedback
Linearization and its ISS equivalent, for the humanoid robot
DURUS (Fig. 1), and show robustness to pushing, uncertain
terrain height, and model perturbations.

The paper is structured as follows: Section II contains
a brief preliminary on input to state stability. Section III
introduces a set of asymptotically stabilizing control Lya-
punov functions (AS-CLFs), exponentially stabilizing control
Lyapunov functions (ES-CLFs) and finally the set of rapidly



exponentially stabilizing control Lyapunov functions (RES-
CLFs). This section will also define the set of input to
state stabilizing control Lyapunov functions (ISS-CLFs) and
show how to obtain the subset of ISS-CLFs from the given
set of CLFs. RES-CLFs are important for the exponential
stabilization of hybrid periodic orbits (see [4]). Section IV
will introduce the definition of hybrid systems and the notion
of hybrid zero dynamics. Section V introduces the main
theorem and Section VI shows the simulation results and
comparisons between a standard stabilizing controller and
its ISS equivalent.

II. PRELIMINARIES ON INPUT TO STATE STABILITY

This section will introduce basic definitions and results
related to input to state stability (ISS); for a detailed survey
on ISS see [16]. Most of the content in this section is based
on [13], [15], [12], [18], [17]. A general nonlinear system
with outputs is represented in the following fashion:

ẋ = f (x,u), (1)

with x taking values in Euclidean space Rn, the input u∈Rm,
the output y ∈ Rk for some positive integers n,m,k. The
mapping f : Rn × Rm → Rn is considered Lipschitz and
f (0,0) = 0. We can define a set of outputs y :Rn→Rk which
is continuous with y(0) = 0. We use a feedback control law

u = k(x),k(0) = 0, (2)

that makes the closed loop system

ẋ = f (x,k(x)) =: fcl(x), (3)

globally asymptotically stable about x = 0. We say that a
controller, k(x), is stabilizing if it makes the closed loop
system (3) globally asymptotically stable. Mathematically,
the notion of input/output stability arises from the need to
find a feedback (2) with the property that the new control
system

ẋ = f (x,k(x)+d), (4)

be input to state stable. For partial observations of interest,
we use the notion of input d to output y stabilization.

It is a well known fact that the feedback control law
k(x) which achieves state-space stabilization does not nec-
essarily produce input/output stabilization. It is specifically
the classes of systems satisfying this property which are
of interest to us. We will state some basic definitions of
stability here: Rn denotes n dimensional Euclidean space, the
field R is the set of real numbers, R≥0 denotes nonnegative
real numbers. N is the set of nonnegative integers. The
vectors y1 ∈Rk1 ,y2 ∈Rk2 , when combined together into one
vector are denoted by (y1,y2) = [yT

1 ,y
T
2 ]

T ∈Rk1+k2 . |x| is the
Euclidean vector norm. The infinity norm on the vector is
denoted by ‖d‖∞ := supt≥0{|d(t)|}. The matrix norm of a
matrix is denoted by ‖P‖, which is its maximum eigen value.

Class K ,K∞ and K L functions. A class K function
is a function α : [0,a)→ R≥0 which is continuous, strictly
increasing and satisfies α(0) = 0. A class K∞ function is

a function α : R≥0 → R≥0 which is continuous, strictly
increasing, proper, and satisfies α(0) = 0, and a class K L
function is a function β : R≥0 × R≥0 → R≥0 such that
β (r, t) ∈K∞ for each t and β (r, t)→ 0 as t→ ∞.

We can now define ISS to consider the entire dynamics of
(4). It is important to note that the input considered for ISS is
the disturbance d. Therefore, all ISS and related definitions
are w.r.t. d.

Definition 1: The system (4) is input to state stable (ISS)
if there exists β ∈K L , and ι ∈K∞ such that

|x(t,x0,d)| ≤ β (|x0|, t)+ ι(‖d‖∞), ∀x0,∀t ≥ 0, (5)

and (4) is considered locally ISS, if the inequality (5) is valid
for an open ball of radius r, x0 ∈ Br(0).

Definition 2: The system (4) is exponential input to state
stable (e-ISS) if there exists β ∈K L , ι ∈K∞ and a positive
constant λ > 0 such that

|x(t,x0,d)| ≤ β (|x0|, t)e−λ t + ι(‖d‖∞), ∀x0,∀t ≥ 0, (6)

and (4) is considered locally e-ISS, if the inequality (6) is
valid for an open ball of radius r, x0 ∈ Br(0).

Definition 3: The system (4) is said to hold the asymptotic
gain (AG) property if there exists ι ∈K∞ such that

limt→∞|x(t,x0,d)| ≤ ι(‖d‖∞), ∀x0,d. (7)

Definition 4: The system (4) is said to be zero stable (ZS)
for a zero input d = 0, if there exists β ∈K L such that

|x(t,x0,0)| ≤ β (|x0|, t), ∀x0,∀t ≥ 0. (8)

Fig. 2 depicts the ZS and AG property.

Lemma 1: The system (4) is ISS if and only if it is ZS
and AG.

Input to State Stable Lyapunov functions. A direct con-
sequence of using ISS concepts is the construction of input
to state stable Lyapunov functions.

Definition 5: An ISS-Lyapunov function for (4) is a con-
tinuously differentiable positive definite function V : Rn →
R≥0 for which there exist functions α, ᾱ,α, ι ,∈ K∞ such
that

α(x)≤V (x)≤ ᾱ(x), (9)
V̇ (x,d)≤−α(|x|)+ ι(‖d‖∞), ∀x,d.

Input to State Stabilty of Affine Control Systems. We can
consider affine control systems of the form

ẋ = f (x)+g(x)u, (10)

where g(x) ∈ Rn×m, is a Lipschitz function of x. Similar to
(1), it is assumed that f (0) = 0, and both f ,g are Lipschitz in
x. The main result of [13] was that systems of the type (10)
can be made input to state stable. In other words, there exists
a Lipschitz continuous map k : Rn→Rm, with k(0) = 0, and
the control law k(x)+d, such that the new system

ẋ = f (x)+g(x)k(x)+g(x)d (11)



Fig. 2: ZS is achieved for a zero input, and AG is achieved
for a bounded input. We use these two important properties
to prove input to state stability.

is ISS.
We can now also define the notion of ISS stabilizability

which is a powerful tool to obtain controllers that satisfy the
ISS conditions [13].

Definition 6: The system (10) is smoothly stabilizable, if
there is a smooth map k : Rn → Rm with k(0) = 0 such
that the system (10) is GAS. It is smoothly input to state
stabilizable if there is a k so that the system (11) becomes
ISS.

Based on this definition, we have this powerful Lemma that
is taken from Theorem 1 of [13] and restated here.

Lemma 2: For systems of the type (10) smooth stabiliz-
ability implies smooth input to state stabilizability.

It is important to note that the smoothness property can be
relaxed to just Lipschitz continuity property without violating
Lemma 2.

III. INPUT TO STATE STABILIZING CONTROL LYAPUNOV
FUNCTIONS

The goal of this section is to generalize and define the set
of stabilizing controllers (i.e., not just one k(x)) via control
Lyapunov functions (CLFs) that yield ISS. Specifically, in
the context of ISS, we will derive a sub-class of control
Lyapunov functions that input to state stabilize the system
(1). CLFs are obtained for the control input u, and the ISS
conditions are satisfied for the disturbance input d. We would
like to call these CLFs input to state stabilizing control
Lyapunov functions (ISS-CLFs). Towards the end of this
section, we will derive a subclass for rapidly exponentially
stabilizing control Lyapunov functions (RES-CLF) that are
important leading into the next section (for hybrid systems).

Definition 7: For the system (1), a continuously differen-
tiable function V : Rn×m→ R≥0 is an asymptotically stabi-
lizing control Lyapunov function (AS-CLF), if there exists a
set of admissible controls U, and α, ᾱ,α ∈K∞ such that

α(|x|)≤V (x)≤ ᾱ(|x|)
inf
u∈U

[L fV (x,u)+α(|x|)]≤ 0. (12)

We are interested in affine systems of the form (10) which
represents a large class of systems like robotic systems. So
we can similarly define CLFs for such systems by replacing
the Lie derivative L fV with L fV (x)+LgV (x)u.

We will define the exponentially stablilizing control Lya-
punov function (ES-CLF), for affine systems here.

Definition 8: For the system (10), a continuously differen-
tiable function V : Rn→R≥0 is an exponentially stablilizing
control Lyapunov function (ES-CLF) if there exist positive
constants c, c̄,c > 0 such that for all x

c‖x‖2 ≤V (x)≤ c̄‖x‖2

inf
u∈U

[L fV (x)+LgV (x)u+ cV (x)]≤ 0, (13)
L f ,Lg are the Lie derivatives. We can accordingly define a
set of controllers which render exponential convergence of
the states to 0

K(x) = {u ∈ U : L fV (x)+LgV (x)u+ cV (x)≤ 0}, (14)

which has the control values that result in V̇ ≤−cV .

Input to State Stabilizing Control Lyapunov Functions.
We define here, a sub-class of CLFs, that are input to state
stable. In other words, we define input to state stabilizing
control Lyapunov functions (ISS-CLFs). We will use ISS-
Lyapunov functions that are defined in Section II.

Definition 9: For the system (1), an asymptotically stabi-
lizing CLF, V : Rn→R≥0 (Definition 7), is an input to state
stable stabilizing control Lyapunov function (ISS-CLF), if it
is satisfies the conditions of an ISS-Lyapunov function. In
other words, if there is ι ∈K∞ such that

V̇ (x,u,d)≤−α(|x|)+ ι(‖d‖∞) (15)
for u = arg{ inf

u∈U
[L fV (x)+LgV (x)u+α(|x|)]≤ 0}

Motivated by constructions of input to state stabilizable
controllers developed by Sontag, specifically, equations (23)
and (32) in [13], we can construct ISS-CLFs in the following
manner. Parts of these are also derived from Artstein’s
theorem [5], [14]. Considering the stabilizing controller k(x)
that resulted in the closed loop system (3) again, we have
the Lie derivative w.r.t. the closed loop vector field fcl as
L fclV (x) = ∂V

∂x fcl(x). It was shown in [13] that the controller

u = k(x)+
1

2m
L fclV (x)LgV (x)T , (16)

input to state stabilizes the system (1). We can derive a
controller like the following which also renders the system
(4) ISS:

u = k(x)− 1
ε̄

LgV (x)T , (17)

for some ε̄ > 0. Based on this controller, we have the
following Lemma which defines a new set of CLFs that input
to state stabilizes the system (1).

Lemma 3: The continuously differentiable function V :
Rn→ R≥0 defined for α, ᾱ,α ∈K∞ as

α(|x|)≤V (x)≤ ᾱ(|x|) (18)

inf
u∈U

[L fV (x)+LgV (x)u+α(|x|)+ 1
ε̄

LgV (x)LgV (x)T ]≤ 0,

is an ISS-CLF ∀ ε̄ > 0.



Proof: We have the following expression after substi-
tuting the controller (18) in the derivative of the Lyapunov
function.

V̇ (x,u,d) = L fV (x)+LgV (x)u+LgV (x)d (19)

≤−α(|x|)− 1
ε̄

LgV (x)LgV (x)T +LgV (x)d.

Since LgV (x)∈R1×m, ‖LgV‖2≥ 0. So we have the following
inequality after adding and subracting ε̄

‖d‖2∞
4

V̇ (x,u,d)≤−α(|x|)− 1
ε̄
‖LgV (x)‖2 +‖LgV (x)‖‖d‖∞

− ε̄
‖d‖2

∞

4
+ ε̄
‖d‖2

∞

4

≤−α(|x|)−
(

1√
ε̄
‖LgV (x)‖−

√
ε̄
‖d‖∞

2

)2
+ ε̄
‖d‖2

∞

4

≤−α(|x|)+ ε̄
‖d‖2

∞

4
, (20)

which is in the form given by (9). It can be observed that
an excellent way to drive the ultimate bound to a very small
value is by decreasing ε̄ .

If we pick an exponentially stabilizing control Lyapunov
function (ES-CLF), (13), we can modify (20) that results
in exponential input to state stability (e-ISS) w.r.t. d.

Lemma 4: The continuously differentiable function V :
Rn→ R≥0 defined for c, c̄,c > 0 as

c‖x‖2 ≤V (x)≤ c̄‖x‖2 (21)

inf
u∈U

[L fV (x)+LgV (x)u+ cV (x)+
1
ε̄

LgV (x)LgV (x)T ]≤ 0,

is an e-ISS-CLF ∀ ε̄ > 0.

Proof of this is omitted since it is straightforward from
(20), where α(|x|) needs to be simply replaced with cV (x).
Motivated by Lemma 3 we can create a subclass of ES-CLFs
that are e-ISS

Kε̄ (x) = {u ∈ U :L f V (x)+LgV (x)u+ cV (x) . . .

+
1
ε̄

LgV (x)LgV (x)T ≤ 0}. (22)

Since ε̄,LgV (x)LgV (x)T are both ≥ 0, it can be verified that
Kε̄ ⊆K (the set obtained from (14)).

Rapidly Exponentially Stabilizing Control Lyapunov
Functions. If we need stronger bounds of convergences
(especially used for hybrid systems like bipedal robots;
more on in this is discussed in Section IV), a rapidly
exponentially stabilizing control Lyapunov function (RES-
CLF) is constructed that stabilizes the output dynamics at
a rapidly exponential rate (see [4] for more details) through
a user defined ε > 0.

Definition 10: The family of continuously differentiable
functions Vε :Rn→R≥0 is a rapidly exponentially stabilizing
control Lyapunov function (RES-CLF) if there exist positive
constants c1,c2,c3 > 0 such that for all 0 < ε < 1, x,

c1‖x‖2 ≤Vε(x)≤
c2

ε2 ‖x‖
2, (23)

inf
u∈U

[L fVε(x)+LgVε(x)u+
c3

ε
Vε(x)]≤ 0.

Therefore, we can define a class of controllers Kε :

Kε(x) = {u ∈ U : L fVε(x)+LgVε(x)u+
γ

ε
Vε(x)≤ 0}, (24)

which yields the set of control values that satisfies the desired
convergence rate.

Similar to Lemma 4 we pick a subclass of RES-CLFs
called rapidly exponentially input to state stabilizing control
Lyapunov functions (Re-ISS-CLF) which is given in the
lemma below.

Lemma 5: The continuously differentiable function Vε :
Rn→ R≥0 defined for c1,c2,c3 > 0 as

c1‖x‖2 ≤Vε (x)≤
c2

ε2 ‖x‖
2, (25)

inf
u∈U

[L f Vε (x)+LgVε (x)u+
c3

ε
Vε (x)+

1
ε̄

LgVε (x)LgVε (x)T ]≤ 0,

is an Re-ISS-CLF ∀ 0 < ε < 1, ε̄ > 0.

Motivated by Lemma 3 we can create a subclass of RES-
CLFs that are Re-ISS

Kε,ε̄ (x) = {u ∈ U : L f V (x)+LgV (x)u+
c3

ε
Vε (x) (26)

+
1
ε̄

LgVε (x)LgVε (x)T ≤ 0}.

Similar to (22), ε̄,LgV (x)LgV (x)T are both ≥ 0, it can be
verified that Kε,ε̄ ⊆Kε (the set obtained from (24)). In fact,
Kε,ε̄ ⊆Kε̄ ⊆K, and Kε ⊆K.

To summarize, for affine systems of the form (10), we
showed that we can create a set of ISS controllers for the
three types of classes: AS-CLFs, ES-CLFs, RES-CLFs. We
also defined two subclasses mathematically, e-ISS-CLF (22),
and Re-ISS-CLF (26) which both yield e-ISS. The purpose
of Re-ISS-CLF will be more clear in the context of hybrid
systems in Section IV.

Extension of Artstein’s Theorem We can make use of
Artstein’s theorem [5] which states that existence of a smooth
control Lyapunov function implies smooth stabilizability,
which can be extended to include ISS-CLFs by using Lemma
2.

Lemma 6: For systems of the form (10), existence of a
smooth stabilizing control Lyapunov function implies the
existence of a smooth input to state stabilizing control
Lyapunov function.

This, of course, is valid for non-smooth Lipschitz continuous
control laws, and can also be extended to AS-CLFs, ES-CLFs
and RES-CLFs and conclude that the corresponsing ISS
versions of these CLFs can be easily computed. Lemma 6
can be used to construct input to state stabilizing controllers,
given a CLF. While constructing these robust controllers
are possible, major challenges lie in obtaining a Lyapunov
function for the given system. The most popular approach
used is via feedback linearization. More on this is explained
in Section VI.

IV. HYBRID SYSTEMS

In this section, we will discuss a general hybrid model;
generally used for a bipedal robots. Informally, a hybrid



Fig. 3: Figure showing a simple hybrid system.

system is an alternating sequence of continuous and discrete
events.

Definition 11: A hybrid control system is defined to be
the tuple:

H C = (Γ,D,U,S,∆,FG), (27)

where each element in the set H C is described below: The
directed graph: Γ = (V,E) consisting of vertices and edges:

V= {v1,v2, . . .}, E= {e1,e2, . . .}, (28)

D= {Dv1 ,Dv2 , . . .} is the set of domains. Each domain Dv,
with v ∈V can be defined as the set of feasible states. There
could be kinematic and dynamic contraints that could limit
the statespace. S = {Se1 ,Se2 , . . .} is the set of switching
surfaces or guards, with each guard Se, representing the
surface where the switch over to the next domain happens.
U= {Uv1 ,Uv2 , . . .} is the set of admissible control inputs. If
a feedback control law uv = k(x)∈Uv ⊆Rm is implemented,
the hybrid control system H C reduces to a hybrid system
H with the omission of U. ∆ = {∆e1 ,∆e2 , . . .} is the set
of switching functions or reset maps from one domain to
the next domain. Each reset map ∆e : Svsource → Dvtarget , with
e = {vsource → vtarget} ∈ E is computed at the end of every
continuous event. It is assumed that the reset maps are
Lipschitz continuous in x. FG = {( fv1 ,gv1),( fv2 ,gv2), . . .}
provides the set of vector fields given by the equation:

ẋ = fv(x)+gv(x)u, u ∈ Uv. (29)

fv,gv are both assumed to be Lipschitz continuous in x. If the
hybrid system is modelling a mechanical (robotic) system,
then the vector of its configuration q and velocities q̇ can be
put together: x = (q, q̇) (see (30)).

A system with a single domain and single resetmap is called
a simple hybrid control system (see Fig. 3).

A wide variety of hybrid systems can be defined in
the form of (27) like mechanical systems, network control
systems, switching power systems, embedded systems and
so on. This representation is derived from category theory
used in [3]. Since we are specifically interested in affine
systems, we have considered the vector fields of the form
(29) (although it is easily extensible to non affine systems).

Input to State Stability of Hybrid Systems. Input to state
stability for hybrid systems is defined similar to continuous
systems, with the norm on the inputs being the maximum
value of the suprema of the inputs in during each continuous

event. ‖d‖V = maxv∈V ‖dv‖∞ Due to space contraints, we
will not define explicitly, but all the definitions are directly
derived from Definition 1 to 5. Moreover, since we are
interested in the stability properties of hybrid periodic orbits,
will use the Poincaré map analysis derived from [4].

Trajectory Tracking Control. We now can describe the
trajectory tracking controllers for DURUS (Fig. 1) here. We
will consider a general EOM of the form

D(q)q̈+C(q, q̇)q̇+G(q) = B(q)u+J T
v Fv, (30)

where Jv Jacobian of the holonomic constraints of DURUS.
Accordingly, we have the dynamics represented in terms of
the state x = (q, q̇).

ẋ = fv(x)+gv(x)u (31)

fv(x) =
[

q̇
D−1(q)(−C(q, q̇)q̇−G(q)+J T

v Fv)

]
,gv(x) =

[
0

D−1(q)B

]
.

Outputs. The goal is to derive controllers that realize a

gait in the bipedal robot. The problem is setup such that the
objective is to drive the robot states to a reference periodic
orbit by a tracking control law. We have the set of actual
outputs of the robot as ya : TqQ→Rk, and the desired outputs
as yd :R+→Rk. yd is modulated by a phase variable τ :Q→
R+. By adapting a IO linearizing controller, we can drive the
relative degree one outputs (velocity outputs)

y1,v(q, q̇) = ya
1,v(q, q̇)− yd

1,v(αv), (32)

and relative two outputs (pose outputs)

y2,v(q) = ya
2,v(q)− yd

2,v(τ,αv), (33)

to zero, with v denoting the domain, α denoting the param-
eters of the desired trajectory. These outputs are generally
called virtual constraints [21]. The phase variable, τ , is used
for modulating only the relative degree two outputs. Walking
gaits, viewed as a set of desired periodic trajectories, are
modulated as functions of a phase variable to eliminate the
dependence on time [19]. The IO linearizing controller that
drives the purely state dependent outputs y1,v→ 0, y2,v→ 0
is given by:

uIO =

[
Lgy1,v

LgL f y2,v

]−1(
−
[

L f y1,v
L2

f y2,v

]
+µ

)
, (34)

where µ denotes the auxiliary input applied after the feed-
back linearization. Note that the IO controller is one member
of the class of CLFs. Denote ηv = (y1,v,y2,v, ẏ2,v). If the
system has outputs with more relative degrees of freedom,
then η can be accordingly modified. Applying the controller
(34) results in the following output dynamics

η̇v =

0 0 0
0 0 1k2×k2
0 0 0


︸ ︷︷ ︸

F

ηv +

1k1×k1 0
0 0
0 1k2×k2


︸ ︷︷ ︸

G

µ. (35)

k1 is the size of the velocity outputs y1,v, and k2 is the size
of the relative degree two outputs y2,v. The dimension of



the outputs k1 + k2 = k is typically equal to the number of
actuators m.

Hybrid Zero Dynamics. When the control objective is met
such that ηv = 0 for all time then the system is said to
be operating on the zero dynamics surface [2] represented
by the coordinates zv ∈ R2n−k1−2k2 . Further, by relaxing the
zeroing of the velocity output y1,v, we can realize partial
zero dynamics

PZv = {(q, q̇) ∈ Dv|y2,v = 0,L f y2,v = 0}. (36)

The humanoid robot, DURUS (Fig. 1), has feet and employs
ankle actuation to propel the hip forward during the contin-
uous dynamics. The relaxation assumption is implemented
on the hip velocity, resulting in partial zero dynamics. The
controller drives the outputs to partial zero dynamic surface
only in the continuous dynamics. Therefore, for a hybrid
control system H C , partial hybrid zero dynamics can
be guaranteed if and only if the discrete maps {∆e}e∈E
are invariant of the partial (or full) zero dynamics in each
domain.

∆e(PZvsource ∩Svsource)⊂ PZvtarget , e = {vsource→ vtarget} ∈ E. (37)

The best way to ensure hybrid invariance under a discrete
transition is by a careful selection of the desired trajectories
(desired gait) via the parameterization: αv, which are chosen
by using a direct collocation based walking gait optimization
problem which is explained in [9]. The outputs ηv are
normally called the transverse coordinates, and zv are called
the zero coordinates, and they are related to x via the
diffeomorphism (ηv,zv) = Φv(x) and

η2,v :=
[

y2,v
L f y2,v

]
=: Φ

y2
v (x),ζv :=

[
y1,v

z

]
=: Φ

z
v(x). (38)

V. FORMAL RESULTS OF STABILITY

In this section, we will investigate the stability properties
of hybrid systems for controllers of the form (24) first and
then analyze ISS properties of controllers of the form (26).
By viewing walking as periodic orbits that are hybrid in
nature, we check for conditions that result in attractive and
forward invariant periodic orbits. Applying the RES-CLF
(24) on the hybrid control system H C (27) yields the hybrid
system

H ε = (Γ,D,S,∆,Fε), (39)

where the only difference is the set of vector fields Fε =
{ f ε

v1
, f ε

v2
, . . .}, which are obtained after the substitution of

(24). Similarly, applying Re-ISS-CLF (26) instead of (24)
results in the hybrid system H ε,ε̄ .

Since the same controller (24) drives the outputs η2,v→ 0,
implying (partial) zero dynamics. Hybrid invariance (37) and
convergence of outputs η2,v → 0 results in a reduced order
hybrid system consisting of only the coordinates ζv (from
(38)).

H |z =(Γ,D|z,S|z,∆|z,F|z). (40)

The dynamics observed in this reduced order hybrid system
is called the partial hybrid zero dynamics.

Periodic Orbits and Poincaré maps. The solution x(t,x0)
is periodic if there is a period T ∗ such that x(t +T ∗,x0) =
x(t,x0). By transforming x into the coordinates (ηv,zv), we
can define a hybrid flow for the transformed coordinates
(transverse and zero) ϕt(ηv,zv). Therefore, when the solution
passes through two domains with the transition at t1, we have
ϕt1+t2 = ϕt2 ◦∆e1 ◦ϕt1(ηv,zv). We can also define a periodic
flow ϕt+T ∗(ηv,zv) = ϕt(ηv,zv) with the initial condition
(ηv,zv). The flow has a fixed point ϕT ∗(η

∗,z∗) = (η∗,z∗).
Assume that O is a periodic orbit that is obtained from the
periodic flow

O = {ϕt(η
∗,z∗) ∈

⋃
v∈V

Φv(Dv)|0≤ t ≤ T ∗}. (41)

Similarly, we can define a periodic orbit in the partial hybrid
zero dynamics as

Oz = {ϕz
t (y
∗
1,0,z

∗) ∈
⋃
v∈V

Φ
z
v(Dv)|0≤ t ≤ T ∗}, (42)

where ϕ
z
t (y∗1,0,z

∗) is the flow of the partial zero dynamics
with the initial point (y∗1,0,z

∗). Given the periodic orbit
in the partial zero dynamics Oz, we can reconstruct the
periodic orbit of the full order dynamics, by using the
canonical embedding, ι0(y1,v,zv)= (y1,v,0,zv). We can define
the norm ‖(ηv,zv)‖O as the closest distance to the O . The
periodic orbit O is exponentially stable if there are constants
r,δ1,δ2 > 0 such that if (ηv,zv) ∈ Br(O) it follows that
‖ϕt(ηv,zv)‖O ≤ δ1e−δ2t‖(ηv,zv)‖O . Exponential stability of
Oz can also be similarly defined.

Theorem 2 in [4] says that for small enough ε > 0, the
RES-CLF renders the full order periodic orbit O expo-
nentially stable. Since Kε,ε̄ ⊂ Kε , this naturally extends to
controllers of the form (26). Therefore, we need to show that
Kε,ε̄ is indeed an input to state stabilizing controller for the
hybrid control system (27). We have the following theorem,
which is the extension of Lemma 6 to affine hybrid systems.

Theorem 1: Let Oz be an exponentially stable periodic
orbit for the hybrid zero dynamics H |z transverse to S|z.
Existence of a Lipschitz continuous RES-CLF, u ∈Kε (24),
that exponentially stabilizes O = ι0(Oz), implies the exis-
tence of a Lipschitz continuous Re-ISS-CLF, u ∈Kε,ε̄ (26),
that exponentially input to state stabilizes O .

Proof: [Sketch] A sketch of the proof is provided here
due to space constraints. We will use most of the concepts
from [4]. Zero stability is valid by default. Therefore, we
just need to show that the states are ultimately bounded by
a class K function of ‖d‖∞. for ‖(η ,z)‖O ≥ ι(‖d‖∞), we
know that with sufficiently small ε̄ in (26), we can retain the
original convergence rate as indicated by (20). Therefore, for
the continuous dynamics, V̇ε ≤− γ

ε
Vε for ‖(η ,z)‖ sufficiently

large. With this inequality, all of the formulations from
equations (61) to (67) in [4] can be used. In other words, the
periodic orbit O is exponentially converging for sufficiently



Fig. 4: Hybrid system model for the walking robot DURUS.

large ‖(η ,z)‖, meaning the periodic orbit O is exponential
input to state stable.

VI. RESULTS

For verification of the improved stabilizing results pre-
sented above, we simulate a humanoid robot under various
disturbances and observe improvements of the stability of
the gait. The robot under consideration is DURUS, a 23
DOF robot, consisting of fifteen actuated joints and one
linear passive spring at the end of each leg. The generalized
coordinates of the robot are described in Fig. 1 (see [9]) and
the continuous dynamics of the bipedal robot is given by
(30). The nominal walking gait considered in this simulation
study has two phases: single support, and double support, as
shown in Fig. 4. A stable reference walking gait is obtained
and verified via an offline optimization algorithm. Therefore,
based on Theorem 2 of [4], there is a small enough ε

(observed to be ≤ 0.2) that makes the hybrid periodic orbit
exponentially stable. It is important to note that the torque
requirements increase with the decrease in ε .

The main objective of performing a perturbation analysis
is to test the stability of the walking gait under uncertainties
that are as realistic as possible. Therefore, we set torque
limits of 250Nm for each joint and apply a modeling error of
10% to the mass-inertial properies of the robot. Specifically
the modeling error was enforced on the mass, center of mass
and inertial properties of each link. It is assumed that other
properties such as links lengths and spring constants are
accurate. The stabilizing controller chosen for simulation is
IO linearization (as given by (34))

uIO =

[
Lgy1,v

LgL f y2,v

]−1(
−
[

L f y1,v
L2

f y2,v

]
+

[
− 1

ε
y1,v

− 2
ε

L f y2,v− 1
ε2 y2,v

])
.

The ISS controller chosen was (as given by (17))

uISS = uIO−
1
ε̄

LgV T .

where the Lyapunov function V (ηv) = ηT
v Pε ηv. Pε , de-

pends on ε , is the solution to the CARE: FT Pε + Pε F −
1
ε

Pε GGT Pε +
1
ε

Qε (see equation (47) of [4]).
Two test cases were considered: lateral push force to the

hip for a duration of 0.1s at the beginning of the single
support domain, and stepping onto an unknown ground
height. Table I shows the comparison for the push force
recovery between uIO and uISS for different values of ε, ε̄ . It

Maximum
Controller IO Gain (ε) Allowable Push (N)

0.2 380
IO 0.1 420

0.05 395
ISS 0.2 380

(ε̄ = 0.1) 0.1 435
0.05 410

ISS 0.2 435
(ε̄ = 0.01) 0.1 435

0.05 405

TABLE I: Comparison of maximum recoverable push forces
in lateral direction. The ISS based controller can handle
greater pushes. Also reducing ε leads to instability due to
the constraints on model uncertainty and torque limits.
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Fig. 5: Comparisons of the Lyapunov function for various
values of ε̄ for push recovery. The push force was 350N.
The convergence is quicker for decreasing ε̄ . The jumps are
due to discrete events (impacts).

can be observed that with uISS the robot can handle greater
push forces. With lower ε , the stability of the robot is
affected (due to 10% model error and torque saturations)
resulting in poorer performance for ε = 0.05. On the other
hand, Fig. 5 shows that the convergence improves as ε̄ is
lowered. Fig. 6 shows the Lyapunov function comparisons
for the push recovery. Fig. 7 and Fig. 8 show the comparisons
for unknown step over different heights. Fig. 9 shows tiles
of push recovery (top) and stepping over (bottom) for an
ISS controller. A video link demonstrating the simulations
performed on the robot is given in [1].
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Fig. 6: Push recovery comparison via the Lyapunov functions
for IO (a) and ISS (b) based controllers. ε = ε̄ = 0.1. The
convergence rate is preserved for ISS-CLF.

VII. CONCLUSIONS

In this work, it was shown how to obtain a class of input
to state stabilizing controllers for hybrid systems, given the
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Fig. 7: Step over comparison via Lyapunov functions for
IO (a) and ISS (b) based controllers. ε = ε̄ = 0.1. The
convergence rate is preserved for ISS-CLF.

0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96
-0.4

-0.2

0

0.2

0.4

0.88 0.9 0.92 0.94
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Fig. 8: Walking over 5cm step height. Phase portraits for
vertical z position of the torso base are shown here. The ISS
based controller shows a much smaller deviation.

set of stabilizing controllers. It was shown in the specific
case of the biped robot DURUS by picking a Lyapunov
function based on IO linearization. With this construction, we
obtained the class of input to state stabilizing controllers (26)
that adds robustness to the given hybrid periodic orbits O .
The simulation results demonstrated that the auxiliary gain
ε̄ can be used to restrict the ultimate bound of the outputs
without compromising on the convergence rate γ

ε
provided

by the RES-CLF (24). Note that the rate of the stabilizing
controller ε does not promise the original convergence rate
under uncertainties. The methodology shown can be used to
realize robust quadratic programs in real time with the end
result being input to state stable walking on DURUS.
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