
Resolved Motion Control for 3D Underactuated Bipedal Walking using
Linear Inverted Pendulum Dynamics and Neural Adaptation

Victor C. Paredes1 and Ayonga Hereid1

Abstract— We present a framework to generate periodic
trajectory references for a 3D under-actuated bipedal robot,
using a linear inverted pendulum (LIP) based controller with
adaptive neural regulation. We use the LIP template model
to estimate the robot’s center of mass (CoM) position and
velocity at the end of the current step, and formulate a
discrete controller that determines the next footstep location to
achieve a desired walking profile. This controller is equipped
on the frontal plane with a Neural-Network-based adaptive
term that reduces the model mismatch between the template
and physical robot that particularly affects the lateral motion.
Then, the foot placement location computed for the LIP model
is used to generate task space trajectories (CoM and swing
foot trajectories) for the actual robot to realize stable walking.
We use a fast, real-time QP-based inverse kinematics algorithm
that produces joint references from the task space trajectories,
which makes the formulation independent of the knowledge
of the robot dynamics. Finally, we implemented and evaluated
the proposed approach in simulation and hardware experiments
with a Digit robot obtaining stable periodic locomotion for both
cases.

I. INTRODUCTION

Bipedal robotic locomotion is inherently an unstable pro-
cess that requires proper planning of the body and swing foot
trajectories to stabilize it. For instance, well-known methods
such as the Divergent Component of Motion (DCM) [1], [2],
the Zero Moment Point (ZMP) [3] or the Capture Point (CP)
[4], rely on the appropriate planning of the trajectory of the
Center of Mass (CoM) and swing foot. Other dynamic meth-
ods are based on the generation of whole periodic orbits that
exhibit attractiveness [5]. Many approaches are available to
produce those trajectories, ranging from trajectory optimiza-
tion [6], [7], template models based design using LIP [8], [9],
Spring Loaded Inverted Pendulum [10], Centroidal Models
[11] or reinforcement learning frameworks that learns stable
trajectories [12]. These methods are especially well suited
when the system presents under-actuation and the trajectory
planning must consider the passive or uncontrolled dynamics
of the robot. Usually, the generation of a periodic orbit results
in efficient dynamic walking gaits. However, in practice,
these gaits require an additional stabilizing controller that
adds robustness against model or terrain uncertainty and
external disturbances [12], [13]. They usually use heuristic
regulators that provide an intuitive human-inspired stabiliz-
ing strategy based on representative states of the robot, such
as torso velocity and orientation [14].

*This work was supported in part by the National Science Foundation
under grant FRR-21441568.

1Mechanical and Aerospace Engineering, Ohio State University, Colum-
bus, OH, USA. (paredescauna.1, hereid.1)@osu.edu.

Fig. 1. a) The linear inverted pendulum (LIP) is used to represent
Digit with its total mass concentrated on the CoM and with massless
legs. We divide the motion of the robot in: b) Sagittal Plane, to
describe the forward and backward walking and the c) Frontal
Plane, to describe the lateral motion.

On the other hand, although the simplified template mod-
els have an imperfect representation of the actual robotic
model, they capture the overall behavior of the robot with
certain degree of accuracy and with a simple and analyzable
model which has the advantage of providing a principled
design approach for an stabilizing controller. Template based
approaches developed in [8], [9], [15] has produced stable
periodic walking for the robot Cassie, a bipedal robot without
torso and lightweight legs. Their approach uses a linear
inverted pendulum as a template model which is used to
produce a discrete stepping controller that converges to the
LIP desired orbits. Since the LIP template model provides
only an approximation, different robots might have different
levels of mismatch with the predictions provided by the LIP.

In this paper, we propose using a LIP template model
to generate a stepping controller equipped with an adaptive
learning regulator to improve the stepping location that
accounts for the mismatch between the template model and
the actual robot. Note that the neural network learns the
residual on the LIP model, and does not consider the model
of the robot for the learning. On the other hand, model
based Adaptive controllers such as L1 control methods [16]
use the nominal knowledge of the robot dynamics. Similarly
using learning to leverage the residual dynamics in real time
as shown in [17] use the robot’s dynamics. However, in
real-time applications, these model based controllers might
require longer computation time than an inverse kinematics

based trajectory generator, which in this work we highlight
as a fast algorithm that can generate stable walking with a
joint level PD control.

Given the desired foot location we generate hand-crafted
trajectories on task space which enforces the LIP conditions
(constant height) and provides a suitable swing foot trajec-
tory (enough foot clearance and soft impacts). The task space
trajectories are converted into desired joint level trajectories
by running a QP-based inverse kinematics (QP-IK) algorithm
in real-time. The joint references are tracked using a standard
PD controller with feed-forward terms for torso orientation
and robot height. Consequently, our controller does not
depend on the knowledge of the robot’s dynamics but only
its kinematics structure.

In this work we use the robot Digit, a bipedal robot built
by Agility Robotics, corresponding to the next iteration of
Cassie. It that has a torso, arms and lightweight legs (See
Fig. 1). The main contributions of this paper are:
• Formulating an neural-adaptive framework that is based

on the LIP model for foot placement based control. The
adaptive term improve the gap between the LIP model
and the actual Digit model.

• The formulation of a task-space inverse kinematics
solver that provides joint references in real-time.

• The simulation and hardware experiments of the LIP-
based controller with neural adaptation on the robot
Digit.

The paper structure starts with Section II that provides
the mathematical background of the LIP model, including
its phase portrait and a description of the forward and
lateral walking. Section II-B explains how to obtain a pe-
riodic trajectory based on the phase portrait of LIP and the
symmetry of the gait. Section III formulates a discrete-time
neural adaptive feedback control that stabilizes the step-to-
step dynamics. Section IV presents the formulation of the
task space objectives to achieve the foot placement provided
by the stepping controller and a QP-based inverse kinematics
algorithm for generating joint reference trajectories from
the task-space trajectories. Finally, Section V presents the
simulation and hardware experimental results of the proposed
approach on the 3D biped robot, Digit.

II. LINEAR INVERTED PENDULUM MODEL

The LIP model is one of the most commonly used template
models that captures the motion of the CoM dynamics of
bipedal robots [3], [4], [18]. We use a 2D LIP model that
provides a planar representation of motion that is linear and
has only two states, the center of mass and its velocity
with respect to the support foot, making it simple enough
for stability analysis. Note that the support leg and the
swing leg swap functions after impacting the ground, and
in this work we consider that the swapping is instantaneous,
providing only a single support phase (SSP). Our particular
assumptions of the LIP model are:
• The legs are massless, or in practice, they are

lightweight.

• We consider that the robot has a point mass centered at
the center of mass (CoM).

• The height of the CoM is constant.
• The robot has point-feet, or non-actuated ankles.

A. LIP Dynamics

Without loss of generality, we can choose the sagittal Plane
(Fig. 1) to analyze the LIP dynamics, which are represented
by a linear second order system [3]:

p̈x(t) =
g
z0

px(t), (1)

where px is the position of the CoM with respect to the
support foot, g is the gravity acceleration constant, and z0 the
constant CoM height. Let x(t) := (px(t),vx(t)) with vx(t) :=
ṗx(t) be the LIP states, then (1) can be written in the state-
space form:

ẋ =

[
0 1

λ 2 0

]
x = ASSPx, (2)

where λ =
√

g
z0

. Since the dynamics are linear, the states
can be solved for a desired time t, given any set of initial
conditions x0 = (px(0),vx(0)) as:

x(t) = eASSPtx0 =

[
cosh(λ t) 1

λ
sinh(λ t)

λ sinh(λ t) cosh(λ t)

]
︸ ︷︷ ︸

M(t)

x0, (3)

Consider a sequence of walking steps realized by the
biped, as shown in Fig. 2. For a given step k we can relate
the states at the beginning of the current step with the states
at the end of the current step.

x−k := x(T) = M(T)x+k , (4)

where x−k are the pre-impact states, x+k represents the post-
impact states in step k, and T is the step duration. The
equation (4) can be made time-independent by choosing a
constant step duration. We will drop the dependency on the
constant time T , i.e., M(T) = M, on future equations for
simplicity. The motion of an under-actuated robot under our
LIP assumptions is completely described by setting its initial
condition x0 and obtaining its solution through (3). As it will
be shown in the following section, the initial condition x0 in
the LIP determines the type of motion it will describe (frontal
or sagittal plane motion).

B. Phase Portrait and LIP Orbits

There are two different types of phase portrait trajectories
that the LIP exhibit, shown in Fig. 3. They are called P1
and P2 orbits. In the P1 orbits, we represent the forward and
backward motion with the blue and red lines, respectively. On
the other hand, P2 orbits are represented by the green, cyan
and orange lines to represent lateral walking for different
speeds.

The walking orbits are described by the phase portrait of
the LIP dynamics when we show periodic solutions with a
step duration t = T . For instance, considering the P1 orbits
in Fig. 3, we can start at the point M and follow the LIP

(a) Forward walking

(b) Lateral walking

Fig. 2. The robot motion is decomposed into two planes of motion,
both decoupled motions are designed to have the swing foot to
impact at time t = T . a) The forward walking gait with average
velocity vd

x and foot placement at uk is characterized by a P1 orbit.
b) The lateral walking gait with an average velocity vd

y and foot
placement uRk (right stance) or uLk (left stance) is characterized by
a P2 orbit. In both cases, the superscripts (+) and (−) represent
the beginning of the current step, just after the impact and the end
of the current step, just before the impact.

Fig. 3. The LIP phase portrait shows different state evolution for
forward velocity (P1 orbits) and lateral velocity (P2 orbits). The
dashed lines represent the orbital lines, which serve as boundary
of the motion given a stepping time T and a desired velocity. The
dotted horizontal lines represent the reset map that restarts the orbit
for the next step. Note that P1 orbits are 1-step periodic, while P2
orbits are 2-step periodic.

dynamics (blue line) for T seconds until reaching the sym-
metric point N. When reaching N an impact occurs and the
swing leg becomes the support leg. The new initial condition
of the LIP depends on the location of the swing foot, if we set
it such that the gait is periodic, the transition is represented
by the horizontal dotted line that goes instantaneously from
N to M, completing an step. Similarly, for P2 orbits, if we
start at point P and follow the LIP dynamics (green line)
the state will reach Q and the swing leg will impact with
the ground. After swapping legs, and assuming a periodic
solution, the state becomes R and moving towards S . Finally,
after impacting with the ground again, the state returns to P.

The orbital lines (dashed lines in Fig. 3) represent the
boundaries on which the continuous part of a periodic gait
begins and ends.

P1 Orbital Lines. The P1 orbital lines conform a set of
initial conditions of the LIP dynamics that provides periodic
solutions in T seconds, i.e px(T) = −px(0) and vx(T) =
vx(0). The P1 orbital lines are defined by the equation:

vx =±λ coth(
T λ

2
)px =±σ1 px, (5)

where σ1 is the slope of the P1 orbital lines and determined
solely by the step duration, T .

P2 Orbital Lines. Likewise, the green, cyan and orange
lines in Fig. 3 represent P2 orbits for different positive lateral
velocities (vd

y). The P2 orbital lines are characterized by the
desired lateral velocity, given as

vy =±σ2 py +d2, (6)

where σ2 = λ tanh(T λ

2) is the slope and

d2 =
λ 2 sech2(λT

2)T vd
y

2σ2
, (7)

is the offset. A periodic gait can be synthesized from the
phase portrait by finding a periodic motion with the desired
forward and lateral velocities as shown in Fig. 2. A detailed
computation of the orbital lines, including the case where
double support phase exists can be found in [10].

III. FOOT PLACEMENT CONTROL

A foot placement controller can be designed with the
objective to drive the actual robot states to the ideal states
of the LIP just before impact. We use an auxiliary control
input—the swing foot location—in our design.

A. Target LIP states

For P1 orbits, the ideal LIP states just before impact (x∗)
are located on the line vx =+σ1 px,

x∗ =
[
1 σ1

]T vd
x T
2

. (8)

To keep a periodic solution the ideal swing foot location is
designed as ux = u∗ where,

u∗ = vd
x T. (9)

In the P2 orbits, y∗ can represent the swing foot with
respect to to left foot (y∗L) or right foot (y∗R). The ideal foot
placement, uy = u∗L/R is required to compute the ideal states,

y∗L/R =

[
u∗L/R/2

σ2u∗L/R +d2

]
(10)

Note that u∗L/R has many solutions because we have only one
constraint: u∗L + u∗R = vd

y T . We need to define one of them,
(u∗L for instance) to calculate the other one.

Next, we obtain the discrete relationship that map two
consecutive walking steps using the commanded foot place-
ment. For simplicity, but without loss of generality, we drop
the subscripts (x or y) of the LIP and represent the states as
p and v, with x = (p,v) and control u.

B. Step to step dynamics

Consider a domain transition from the end of one cycle
(just before impact) to the beginning of the next one (just
after impact), as shown in Fig. 2 part a),

p+k+1 =−uk, (11)

v+k+1 = v−k , (12)

which can be represented in an affine form by:

x+k+1 =

[
1 0
0 1

][
x−

ẋ−

]
k
+

[
−1
0

]
uk = ax−k +buk. (13)

Combining (4) and (13), we can obtain the step-to-step
dynamics of the LIP model:

x−k+1 = M(ax−k +buk) = Ax−k +Buk. (14)

We drop the (-) in the following discussion for simplicity.
The step-to-step dynamics in (14) determines the linear
mapping of before-impact states between two consecutive
steps. This system accepts a linear controller of the form:

uk = u∗k +K(xk−x∗k), (15)

where u∗k is the ideal step length provided by the target LIP
state and K is a linear gain.

C. Error Dynamics

We define the error at step k, as the difference between
the actual LIP states of the robot (xk) and its ideal value
(x∗k), given in (8) for P1 orbits and in (10) for P2 orbits,
ek = xk−x∗k . Also consider the error in model approximation
ξ integrated in (14):

xk+1 = Axk +Buk +ξ . (16)

We can compute the error propagation in the next step k+1
and relate it with the states and input of the current step k.

ek+1 = xk+1−x∗k+1

= (A+BK)ek +ξ . (17)

Under a perfect match between the LIP and the real robot
(ξ = 0) we choose K such that the error ek+2 becomes zero,

(A+BK)2 = 0. (18)

Considering the system affected by modelling errors in (16),
we observe that we carry the errors for N > 2 steps.

ek+N = (A+BK + I)ξ . (19)

This shows that the modelling error ξ generates a bounded
error in the robot states away from x∗.

D. Neural Adaptive Regulator

As observed, the template model generates a persistent
error on the states due to model mismatch. To improve the
controller action, we propose to add a feed-forward term
that captures the un-modeled dynamics based on a non-
supervised neural network, as detailed in [19]:

uk = u∗k +K(xk−x∗k)+φ(xk,vd
x ,v

d
y), (20)

where φ is the function representing a two layer neural
network

φ(xk,vd
x ,v

d
y) = σ

W T
σ

V T

xk
vd

x
vd

y

 . (21)

The input layer weights V̂ are initialized with a normal
distribution and Ŵ are the output layer weights that are
learned in real-time, using gradient descent delta-rule. The
weight update is computed as,

E = (xk−x∗k)
2, (22)

∆wi, j =−γE jσi, (23)

where, wi, j is the weight from the ith hidden neuron to the
jth output, E j is the error signal for the jth output, σi is the
activation function evaluated at the i-th output and γ is the
learning rate chosen as γ = 1e−4.

The objective of the neural network is to minimize the
error on the state tracking of the LIP model by minimizing
the error between xk and ẋ∗k as a feed-forward term that
compensates for the modeling error ξ .

IV. QP-BASED RESOLVED INVERSE KINEMATICS

The foot placement controller returns the desired location
of the swing foot for the current step, ux and uy, in the
x and y direction respectively. Then, we construct a set
of polynomials that provides a trajectory that connects the
current swing foot location to its desired location at time T,
furthermore, such trajectory generates human-like walking
patterns with adequate foot clearance and smoothness.

1) Task space trajectories: We employ Bézier Polynomi-
als that connect the initial configuration of the CoM and
swing foot frame with one where ux and uy are realized,
while keeping the torso frame vertical and the swing foot
horizontal with the floor (in both cases the rotation matrix
with respect to support foot is the identity).

Since the LIP is considered as point-foot, we allow the
ankle (sagittal and frontal direction) of the actual robot to
be not-actuated, making the CoM in x and y directions to
be free, but we impose a constant height in the z direction.

Consequently, the reference for the CoM frame, oriented as
the pelvis frame, are:

pz
CoM(t) = z0, (24)

RCoM(t) = I3, (25)

where pz
CoM(t) is the center of mass height of the robot with

respect to the support foot, z0 is a constant height reference
(see Fig. 1) and RCoM(t) is the rotation matrix of the center
of mass frame with respect to the support foot, and I3 is an
identity matrix.

In the case of the swing foot, we construct references for
position and orientation in x,y,z coordinates,

psw(t) =
n

∑
i=0

(
n
i

)
Pi(1− t)n−it i, (26)

Rsw(t) = I3, (27)

where psw(t) represents the spatial position of the swing foot,
n is order of the Bézier polynomials and Pi are the control
points. Rsw(t) represent the rotation matrix of the swing foot.
The polynomials are created to be coincident with the initial
swing position just after the impact and the desired swing
foot location just before the impact.

psw(0) = p0, (28)

psw(T) =
[
ux uy −z0

]T (29)

where p0 is the initial swing foot position at the beginning
of a walking step.

A. QP based Inverse Kinematics

A standard way to follow the trajectories is through a
model-based controller running in a QP program. Even when
the modeling is imperfect, a system identification algorithm,
or a model based adaptive controller [16], [17] can be
applied. A simpler method can be designed to use the
kinematics information of the system to provide joint-space
reference trajectories via a QP-based Inverse Kinematics
problem that runs in real time [20]–[22].

In this paper, we solve the optimization problem of the full
robotic model with joint coordinates (q, q̇)∈ T Q. The objec-
tive function minimizes the error in position and orientation
of the CoM and swing foot frames. Our decision variable
is the desired joint velocity q̇d , which we use to constrain
the maximum joint velocity, the joint position limits and to
specify some joints as passive. The optimization is shown
below,

min
q̇d

||JCoM q̇d−TCoM(t)||+ ||Jswq̇d−Tsw(t)|| (30)

s.t q̇d ∈ [q̇min, q̇max]

qd = q+δt q̇d ∈ [qmin,qmax]

q̇d
passive joints = q̇passive joints,

with each objective TCoM(t),Tsw(t) with m ∈ {CoM,sw}
defined as a reference velocity plus a correction term:

Tm(t) =
[

vd
m(t)+Kp(pd

m(t)− pm)
ωd

m(t)−Kω em(t)

]
,

Fig. 4. The resolved motion framework starts with the ideal LIP
trajectories that provides target states for the robot (x∗,y∗) at the
end of the current gait, they are compared with the estimation
of the states at the end of the current gait (x,y), then the foot
placement controller provides desired foot locations (ux,uy). These
locations are transformed into Task space references (pm,Rm),m ∈
{CoM,sw} and transformed into joint space trajectories (qd , q̇d)
through the QP-based inverse kinematics which are tracked with a
joint-level PD controller.

where em(t) = ηd
m(t)εm − ηmεd

m(t) + εd
m(t)× εm represents

the orientation error. Consider the desired the quaternion as
αd

m(t) =
[
ηd

m(t),ε
d
m(t)

]
and the current quaternion as αm =[

ηm,εm
]
. Each quaternion is composed by a scalar part η

and a vector part ε . JCoM and Jsw are the respective jacobian
matrices for the CoM and swing foot frame. The two gain
matrices Kp and Kω can be tuned to reduce the errors on the
desired tasks. A detailed analysis of the objective vectors
TCoM and Tsw and the QP can be found in [22].

We resolve the reference joint trajectories in real time by
integrating the solution of the QP program, qd = q+ q̇dδt ,
where δt is the time interval of the control loop set at 1 ms.
The interaction between foot placement control, trajectory
generation and inverse kinematics can be seen in Fig. 4.

V. RESULTS

The proposed method is validated in both simulation
and hardware experiments, using the same C++ code and
parameters, including control gains, neural network settings
and stepping gains. A video is included with the procedure
and the simulation and experimental results 1.

A. Simulation Results

The simulation software is provided by Agility Robotics,
which is specially tailored to provide a realistic represen-
tation of Digit. The provided low-level API handles the
interaction with the robot in simulation and hardware im-
plementation. We use the simulation to ensure proper robot
behavior and test the control framework.

The first test consisted on commanding different target
forward velocities (Fig. 5). With each new velocity, the
robot recomputes the desired orbit on the fly, generating
a new placement for the swing foot. We can observe that
Digit achieves velocities up to 0.3 m/s in simulation and on
average.

1https://youtu.be/7ym2gm3XiOE

https://youtu.be/7ym2gm3XiOE

Fig. 5. Digit achieving several commanded velocities vx =
{0,0.15,0.25,0.3} and vy = 0

Fig. 6. Phase portrait of selected joints during walking gait at 0.1
m/s in simulation.

To check for periodicity, we set a constant velocity to
the robot and we plot the phase-portrait with the joints. We
observe a periodic orbit as shown in Fig. 6.

The effect of the neural adaptive controller is seen in
Fig. 7, we observed that the neural feed-forward term drives
the orbit from an state error ||e||= 0.1 at 40s to ||e||= 0.06
at about 240s.

B. Hardware Results

We conducted walking experiments on a smooth flat
surface in a laboratory setting and on a treadmill without
inclination. The controller is executed on a host computer
outside the robot’s mainboard, and the commands are trans-
mitted through an Ethernet cable at 1KHz.

We tested lateral and forward walking, and their respective
snapshots can be observed in Fig. 8. We let the robot walk
for about 6 min on the treadmill with velocity increases up
to 0.15 m/s. The velocity profile of the gait is observed in
Fig. 9, while the phase portrait of the sagittal plane joints
after reaching 0.15 m/s is shown in Fig. 10 indicating the
periodicity of the resulting gait.

Similarly to the simulation case, we set a constant forward
velocity vx = 0.1m/s Fig. 11, shows that the initial states

Fig. 7. Lateral states for vx = 0.1 m/s, during simulation. At
40 s, the LIP based controller cannot has an average error of
——e——=0.1 and after learning a regulation at 240s it decreases
to ——e——=0.06.

Fig. 8. Snapshots of the gait for forward walking (above) and lateral
walking (below) on flat ground.

Fig. 9. Digit achieved a velocity of vd
x = 0.15 m/s during the

experiments on the treadmill with vd
y = 0 m/s.

Fig. 10. Phase portrait of selected joints during walking gait at 0.1
m/s in the robot hardware experiment.

Fig. 11. Lateral states for vx = 0.1 m/s, during the hardware
experiments. At 85s, the LIP based controller cannot drive the robot
states to the LIP reference values until the neural regulator learns
a feed-forward term at 276s.

have an error of ||e|| = 0.12 at 80s, while the learned
regulator leads to ||e||= 0.08 at 276s.

VI. CONCLUSIONS

We present a LIP based control method that generates
swing foot locations that produce stable walking for 3D
robots with passive ankles. We realize that model mismatch
can generate a persistent error on a LIP based linear con-
troller and that by using a neural adaptive regulator we can
decrease this error. Additionally, we use an online QP-based
inverse kinematics problem that can be solved in real time
and provides joint level references to be tracked by a PD
controller. This allows a fast method that is independent of
the dynamics of the robot. Finally, the framework realize
stable and periodic walking for Digit in both, simulation and
hardware experiments, and can track different forward and
lateral velocities on the fly.

REFERENCES

[1] J. Englsberger, C. Ott, and A. Albu-Schäffer, “Three-dimensional
bipedal walking control based on divergent component of motion,”
Ieee transactions on robotics, vol. 31, no. 2, pp. 355–368, 2015.

[2] R. J. Griffin and A. Leonessa, “Model predictive control for dynamic
footstep adjustment using the divergent component of motion,” in 2016
IEEE International Conference on Robotics and Automation (ICRA),
May 2016, pp. 1763–1768.

[3] S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa,
“The 3D linear inverted pendulum model: a simple modeling for a
biped walking pattern generation,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2001, pp.
239–246.

[4] J. Pratt, T. Koolen, T. de Boer, J. Rebula, S. Cotton, J. Carff,
M. Johnson, and P. Neuhaus, “Capturability-based analysis and control
of legged locomotion, part 2: application to m2v2, a lower-body
humanoid,” The International Journal of Robotics Research, vol. 31,
no. 10, pp. 1117–1133, Aug. 2012.

[5] A. Goswami, B. Espiau, and A. Keramane, “Limit cycles and their
stability in a passive bipedal gait,” in Proceedings of IEEE interna-
tional conference on robotics and automation, vol. 1. IEEE, 1996,
pp. 246–251.

[6] A. Hereid, E. A. Cousineau, C. M. Hubicki, and A. D. Ames,
“3D dynamic walking with underactuated humanoid robots: a direct
collocation framework for optimizing hybrid zero dynamics,” in Proc.
IEEE Int. Conf. Robotics and Automation (ICRA). Stockholm,
Sweden: IEEE, May 2016, pp. 1447–1454.

[7] X. Da and J. Grizzle, “Combining trajectory optimization, supervised
machine learning, and model structure for mitigating the curse of
dimensionality in the control of bipedal robots,” The International
Journal of Robotics Research, vol. 38, no. 9, pp. 1063–1097, jul 2019.

[8] Y. Gong and J. Grizzle, “One-step ahead prediction of angular mo-
mentum about the contact point for control of bipedal locomotion:
Validation in a lip-inspired controller,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA), 2021, pp. 2832–
2838.

[9] X. Xiong and A. Ames, “3d underactuated bipedal walking via h-
lip based gait synthesis and stepping stabilization,” arXiv preprint
arXiv:2101.09588, 2021.

[10] X. Xiong and A. D. Ames, “Dynamic and versatile humanoid walking
via embedding 3d actuated slip model with hybrid lip based stepping,”
IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 6286–6293,
2020.

[11] Z. Xie, X. Da, B. Babich, A. Garg, and M. van de Panne, “Glide:
Generalizable quadrupedal locomotion in diverse environments with a
centroidal model,” arXiv preprint arXiv:2104.09771, 2021.

[12] G. Castillo, B. Weng, W. Zhang, and A. Hereid, “Hybrid zero dynam-
ics inspired feedback control policy design for 3d bipedal locomotion
using reinforcement learning,” in IEEE International Conference on
Robotics and Automation (ICRA). Paris, France: IEEE, May 2020.

[13] V. Paredes and A. Hereid, “Dynamic locomotion of a lower-limb
exoskeleton through virtual constraints based zmp regulation,” in
Dynamic Systems and Control Conference, vol. 84270. American
Society of Mechanical Engineers, 2020, p. V001T14A001.

[14] M. H. Raibert et al., Legged robots that balance. MIT press
Cambridge, MA, 1986, vol. 3.

[15] S. Teng, Y. Gong, J. W. Grizzle, and M. Ghaffari, “To-
ward safety-aware informative motion planning for legged robots,”
arXiv:2103.14252 [cs], Mar. 2021.

[16] Q. Nguyen and K. Sreenath, “L 1 adaptive control for bipedal robots
with control lyapunov function based quadratic programs,” in 2015
American Control Conference (ACC). IEEE, 2015, pp. 862–867.

[17] Y. Sun, W. L. Ubellacker, W.-L. Ma, X. Zhang, C. Wang, N. V.
Csomay-Shanklin, M. Tomizuka, K. Sreenath, and A. D. Ames,
“Online learning of unknown dynamics for model-based controllers
in legged locomotion,” IEEE Robotics and Automation Letters, vol. 6,
no. 4, pp. 8442–8449, 2021.

[18] Y. Gong and J. Grizzle, “Zero Dynamics, Pendulum Models, and
Angular Momentum in Feedback Control of Bipedal Locomotion,”
arXiv:2105.08170 [cs, eess], May 2021.

[19] K. Thakkar, V. Paredes, and A. Hereid, “Adaptive feedback regulator
for powered lower-limb exoskeleton under model uncertainty,” arXiv
preprint arXiv:2104.11775, 2021.

[20] W. Suleiman, F. Kanehiro, and E. Yoshida, “Infeasibility-free inverse
kinematics method,” in 2015 IEEE/SICE International Symposium on
System Integration (SII), IEEE. IEEE, dec 2015, pp. 307–312.

[21] O. Kanoun, “Real-time prioritized kinematic control under inequality
constraints for redundant manipulators,” in Robotics: Science and
Systems, vol. 7, 2012, p. 145.

[22] J. Nakanishi, R. Cory, M. Mistry, J. Peters, and S. Schaal, “Oper-
ational space control: A theoretical and empirical comparison,” The
International Journal of Robotics Research, vol. 27, no. 6, pp. 737–
757, 2008.

	introduction
	Linear Inverted Pendulum Model
	LIP Dynamics
	Phase Portrait and LIP Orbits

	Foot placement control
	Target LIP states
	Step to step dynamics
	Error Dynamics
	Neural Adaptive Regulator

	QP-based Resolved Inverse Kinematics
	Task space trajectories
	QP based Inverse Kinematics

	Results
	Simulation Results
	Hardware Results

	Conclusions
	References

