
Safe Bipedal Path Planning via Control Barrier Functions for
Polynomial Shape Obstacles Estimated Using Logistic Regression

Chengyang Peng1, Octavian Donca1, Guillermo Castillo1, and Ayonga Hereid1

Abstract— Safe path planning is critical for bipedal robots to
operate in safety-critical environments. Common path planning
algorithms, such as RRT or RRT*, typically use geometric or
kinematic collision check algorithms to ensure collision-free
paths toward the target position. However, such approaches
may generate non-smooth paths that do not comply with the
dynamics constraints of walking robots. It has been shown
that the control barrier function (CBF) can be integrated
with RRT/RRT* to synthesize dynamically feasible collision-free
paths. Yet, existing work has been limited to simple circular or
elliptical shape obstacles due to the challenging nature of con-
structing appropriate barrier functions to represent irregularly
shaped obstacles. In this paper, we present a CBF-based RRT*
algorithm for bipedal robots to generate a collision-free path
through space with multiple polynomial-shaped obstacles. In
particular, we used logistic regression to construct polynomial
barrier functions from a grid map of the environment to
represent irregularly shaped obstacles. Moreover, we developed
a multi-step CBF steering controller to ensure the efficiency
of free space exploration. The proposed approach was first
validated in simulation for a differential drive model, and then
experimentally evaluated with a 3D humanoid robot, Digit, in
a lab setting with randomly placed obstacles.

I. INTRODUCTION

Mobile robots have shown encouraging promises in many
real-world applications outside traditional well-structured
factory settings thanks to the recent advancement of real-
time path planning [1]. Path planning in 2D space has been
extensively studied over the past decades [2], [3]. A feasible
path for a robot requires starting from an initial position to
the goal position without colliding with any obstacle in the
environment. Arguably the most prevailing approach in path
planning is the sampling-based Rapidly Exploring Random
Trees (RRT) algorithm, which expends the path by randomly
sampling points in the configuration space [4]. To improve
the optimality of the resulting path, Karaman and Frazzoli [5]
proposed RRT*, which can reconnect the newly added node
to the nearby nodes based on the minimum cost from the root
node to the new node. Much progress has been made recently
in combining low-level control synthesis and path planning,
such as LQR-RRT* and anytime multi-directional RRT* [6]–
[9], to ensure that the generated paths are consistent with the
underlying dynamics constraints of the robot.

With the trending occasions of robots operating in
the safety-critical environment (e.g., around people or in

*This work was supported in part by the National Science Foundation
under grant FRR-21441568.

1Mechanical and Aerospace Engineering, Ohio State University, Colum-
bus, OH, USA. (peng.947, donca.2, castillomartinez.2,
hereid.1)@osu.edu.

Fig. 1. The snapshots of the bipedal robot, Digit, following the
collision-free path generated by the proposed algorithm.

crowded spaces), the safety of robot motion becomes in-
creasingly critical for the continuous deployment of these
intelligent machines. Control Barrier Function (CBF) is a
popular tool in guaranteeing safety for nonlinear systems
and constraints [10], which has been shown effective in
enforcing the safety-critical constraints on nonlinear systems
such as autonomous vehicles and bipedal robot locomotion
[11]–[15]. Recently, this method has also been used for
designing safety-critical path planners. Yang et al. introduced
a Quadratic Program (QP) that enforces CBF constraints to
achieve obstacle avoidance [16]. Aniketh et al. proposed a
framework to incorporate CBF constraints into RRT path
planning [17]. On these foundations, Ahmad et al. combined
RRT* algorithm with the CBF and equipped it with an
adaptive sampling method to improve efficiency [18]. Liu et
al. present a real-time safe planning system for bipedal robots
based on one CBF [19]. The system detects non-overlapping
obstacles in the environment through LiDAR point cloud data
and computes the elliptical CBF representation. However,
the obstacles studied by the above methods and algorithms
only focused on circular and elliptical shapes because it
would be easy to obtain their barrier functions. In many real-
world scenarios, the circular barrier function is insufficient
or wasteful to represent complex-shaped obstacle regions.

In this work, we developed a modified CBF-RRT* al-
gorithm in Python with a new CBF-QP based multi-step
steering controller for safe path planning in 2D complex
environments. The contributions of the proposed work are as
follows. First, we proposed a new method that uses logistic
regression to construct barrier functions that use polygon
shapes to represent complex obstacles. Second, instead of
calculating CBF-QP once when sampling and moving one

iteration step, we would divide one step into four small
steps, which can effectively trade off the planning speed
and path safety. Finally, we applied our modified CBF-RRT*
algorithm to a bipedal robot to enable it to navigate safely
in a room with complex obstacles and unreachable regions.
We evaluated the proposed algorithm on a Digit robot in the
lab setting and demonstrated the safe navigation of bipedal
walking robots.

The rest of the paper is organized as follows. Section II
reviews the background of CBF and its integration with
RRT/RRT* based planning algorithms. In Section III, we
present the core contribution of the paper, a CBF-RRT*
planning algorithm with multi-step steering and polynomial-
shaped barrier representation of obstacles. The simulation
and experimental results with the Digit robot are presented in
Section IV. Finally, Section V briefly discusses the limitation
of the proposed work and future research directions.

II. BACKGROUND

In this section, we briefly review the mathematical basis
of the control barrier function (CBF) and how it has been
integrated with the RRT/RRT* based planning algorithms for
safe navigation.

A. Control Barrier Function (CBF)

We consider the robot dynamics can be written as the
following affine nonlinear system:

ẋ = f(x) + g(x)u, (1)

where x ∈ X is the system state with X ⊆ Rn being the state
space, and u ∈ U is the control input with U ⊆ Rm being the
control space. If there exists a continuous and differentiable
function h : Rn → R, the safety set C of the system may be
defined as [20]:

C = {x ∈ Rn|h(x) ≥ 0},
∂C = {x ∈ Rn|h(x) = 0}.

(2)

If h(x) has relative degree m > 1, we can define a serious
function ψm(x) : Rn → R given as [21]:

ψ0(x) := h(x),

ψi(x) := ψ̇i−1(x) + αi(ψi−1(x)) i ∈ {1, ...,m},
(3)

where αi(·) is a class κ function. The forward invariance
safety condition can then be guaranteed if the following
inequality constraints are satisfied for all x ∈ C:

Lm
f h(x) + LgL

m−1
f h(x)u+

∂mh(x)

∂tm
+O(h(x))

+ αm(ψm−1(x)) ≥ 0, (4)

where O(h(x)) denotes the remaining Lie derivatives along
f and partial derivatives with respect to t with degree less
than or equal to m− 1. Therefore, if h(x) satisfied both (2)
and (4), it can be called a control barrier function. Since the
control input u is affine in (1) and (4), one can formulate a
quadratic programming (QP) controller subject to the CBF
constraint in (4) to synthesize safe control actions [13], [20],
[21].

B. CBF-RRT/RRT*
Built upon the standard RRT algorithm, Yang et al. de-

veloped the CBF-RRT path planning algorithm that uses
CBF-QP [13] based safety-critical controllers to generate
intermediate control actions to steer the robot away from the
obstacles when approaching them [16]. The CBF controller
replaces the collision check function in the traditional RRT
algorithm while still ensuring safety. In [17], Aniketh et al.
improved the computational efficiency of CBF-RRT further
by replacing CBF-QP with a random sampling of control
actions that satisfy the barrier condition described in (4).
While it preserves the nature of random exploration by
RRT, these approaches are often unable to generate (prob-
abilistically) optimal paths. To improve the optimality of
the resulting path, Ahmad et al. combined CBF-QP with
RRT* based on the work in [16], and improved the sampling
efficiency through adaptive sampling based on the cross-
entropy method (CEM) [18]. It has been shown that RRT*
yields a relatively optimal solution if given sufficient compu-
tation time. This is realized through two critical procedures
described below [22]:

• ChooseParent: finds the near neighbor nodes around
the new node. If there is no obstacle collision between
the new node and each near node, the algorithm will
compute the cost of the new node through each near
node. Finally, it chooses the neighbor node that makes
the cost minimum, as the parent node of the new node.

• Rewrite: reconnects each near neighbor node with the
new node and checks their collisions. It calculates the
costs of these near nodes through the new node. Finally,
it selects the optimal cost and rewrites the tree.

In [18], the authors replaced the collision check function
in the above two procedures with a CBF-QP based steer-
ing function, which inevitably increased the computational
overhead of the CBF-RRT*. It is also important to note
that the three aforementioned studies expand the tree by
randomly sampling a node on the tree to extend toward the
target position. This practice is inefficient in expanding the
tree outward into feasible areas, thereby increasing the total
number of iterations, as well as the computation overhead,
required for the algorithm. Moreover, determining a proper
set of barrier functions to describe obstacles and unreachable
areas remains challenging when using CBF for sampling-
based path planning. The existing work only considers simple
shapes, such as circles or ellipses.

III. SAFE NAVIGATION VIA MULTI-STEP CBF-QP
STEERING WITH RRT*

In this section, we present a safe path planning algorithm
for bipedal robots that integrates the control barrier func-
tion with RRT* to provide guaranteed obstacle avoidance
without explicit collision checking. Moreover, we propose to
construct polynomial barrier functions to represent complex
obstacles or unreachable regions using logistic regression on
the planar grid map of the environment. Finally, we develop a
multi-step CBF steering algorithm to address the infeasibility
issues that the state may end up in the unsafe set.

Fig. 2. Two sets of data. Label 0 data is in red, and Label 1 is
in gray. The sigmoid function is helpful in classifying two sets of
data into two regions. In the blue region(t > 0), the label of data
is more likely to be 1. In the red region(t < 0), the label of data is
more likely to be 0. And t = 0 becomes a boundary that separates
these two regions.

A. Bipedal Path Planning with Simplified Model

With the purpose of finding an obstacle-free path, we
consider the bipedal robot as a simple mass, assuming that
there exists a stable low-level locomotion control that can
follow waypoint or velocity commands. While a biped robot
can walk in all directions, we only consider forward walking
and turning in this paper. This is due to the difficulty of
accurately controlling lateral walking speeds as the robot
swings left and right while walking sideways. To mitigate
these complexities for initial studies, we regard the bipedal
robot as a differential drive type model, with states and
derivative of states given by:

x = [px, py, θ]
T , (5)

ẋ = [v cos θ, v sin θ, ω]T , (6)

where (px, py, θ) corresponds to robot’s position and heading
direction in the world coordinate, and (v, ω) represents the
robot’s forward and angular velocity. If we assume v is a
constant, the system of the robot can be simplified as

ẋ =

ṗxṗy
θ̇

 =

v cos θv sin θ
0

+

00
1

ω = f(x) + g(x)u, (7)

with the control input being u = ω. To avoid a collision
with the obstacle, one needs to synthesize angular velocity
commands that safely steer the robot away from the obstacle.

B. Construct Polynomial Barrier Functions via Logistic Re-
gression from 2D Obstacle Map

To avoid collisions using CBF, we need to define a
set of barrier functions h(x) to represent the boundary of
obstacles in the environment. In this paper, we propose to use
logistic regression to naturally construct polynomial-shaped
barrier functions from a grid map. Compared to circular or
ellipse shapes, polynomial shapes can efficiently represent
arbitrarily-shaped obstacles. Since the free space (i.e., safe
set) is defined as the outside of the closed shapes, polygons
can be used to represent obstacles when using CBF.

Logistic regression is a standard probabilistic statistical
classification model, which classifies data with different
labels [23], [24]. The outcome of logistic regression on one
data sample is the probability of belonging to label 1 or label
0. The classification model (sigmoid function) is given by:

P(y = 1|t) = 1

1 + e−t
, (8)

where P(y = 1|t) represents the probability of the label of
the feature t is 1. Given (8), P(y|t) ∈ [0.5, 1) if t > 0,
meaning the label is more likely be 1; and P(y|t) ∈ [0, 0.5)
if t < 0, meaning that the label is more likely be 0. Assuming
we have a set of data whose label could be either 1 or 0, as
shown in Fig. 2, we can use t = 0 as a classifier or decision
boundary to classify this set of data into two clusters. In
particular, one can express t as an affine function of a set of
variables z = (z0, z1, z2, ..., zj−1)

T ∈ Rj , given as:

t = βz, (9)

where β = (β0, β1, β2, ..., βj−1) ∈ Rj is a vector of the
unknown coefficient of the function. By giving N sets of
data z and their label y, the parameters β can be determined
by minimizing the binary cross entropy cost:

β = argmin

N∑
n=1

(ln(1 + eti)− yiti) for ti = βzi. (10)

In this paper, we used Broyden–Fletcher–Goldfarb–Shanno
(BFGS) algorithm in Python open source package, Scipy.
This is a method for solving unconstrained nonlinear opti-
mization problems, to find β.

The equation t = βz = 0 is the decision boundary of two
sets. For our purpose, we can consider areas that have t > 0
as free space (i.e., safe set), and t < 0 as obstacle space
(i.e., unsafe set). This is consistent with the CBF definition
in (2). To construct barrier functions from a 2D obstacle map,
the first step is to determine the set of variables z from the
robot’s state variables x. In this paper, we empirically select
a set of polynomial functions of the robot’s position with the
maximum power of 4, given by

z = [1, p1xp
0
y, p

0
xp

1
y, ..., p

1
xp

3
y, p

0
xp

4
y]

T (11)

where (px, py) is an x-y coordinate of a point on the map.
The coefficient vector is also defined accordingly, as β =
[β0, β1, β2, ..., β14, β15]. A barrier function is then given by
h(x) := βz, which encloses an occupied area in the map.

To solve the parameters β, we get arrays by putting each
point position into (11), and save these arrays into matrix Z.
Derive the cost function for h(x), and using array Y which
stores the label (occupied or free) of corresponding position
and matrix Z to minimize the cost function in (10). Finally,
using BFGS method, we solve the parameters β to construct
barrier functions. Fig. 3 shows two examples of resulting
barrier boundaries of convex and concave-shaped obstacles.

(a)

(b)

Fig. 3. Illustration examples of constructing barrier functions from
2D obstacle map. We first sampled equidistant n points on the map
and labeled each point either free or obstacle. (a). The sampled
points in a map. Red crosses mean Label 0: when the point is in an
obstacle; and Blue dots mean label 1: which is free space. (b). The
generated barrier functions closely represent concave and convex
obstacle regions.

C. CBF-QP Safe Steering Controller

Given a barrier function h(x) = βz generated by solving
(10), where z is composed of polynomial combinations of the
states (px, py), we will formulate a CBF-QP steering control
for the system defined in (7). Since h(x) has relative degree
two, we can construct a CBF according to (4), given as

L2
fh(x) + LgLfh(x)u+ α2(ψ1(x)) ≥ 0, (12)

where

ψ0(x) = h(x), (13)

ψ1(x) = ψ̇0(x) + α1 (ψ0 (x)) . (14)

Following the definition of h(x), we have

ψ̇0(x) = ḣ(x) = β

(
∂z

∂px
ṗx +

∂z

∂py
ṗy

)
= β

(
∂z

∂px
v cos θ +

∂z

∂py
v sin θ

)
,

(15)

L2
fh(x) = β

(
∂2z

∂p2x
v2 cos2 θ +

∂

∂px

(
∂z

∂py

)
v2 sin θ cos θ

+
∂

∂py

(
∂z

∂px

)
v2 cos θ sin θ +

∂2z

∂p2y
v2 sin2 θ

)
, (16)

LgLfh(x)u = β

(
− ∂z

∂px
v sin θ +

∂z

∂py
v cos θ

)
u. (17)

Algorithm 1: CBFSteer(β, nnear, v, θxs
, v)

Initialization: i=0, steps=4, θ = θxs

while i < steps do
i←− i+ 1;
nnew ←− Extend (nnear, θ, v);
ω ←− CBF-QP (nnew.px, nnew.py, θ, v);
θnew ←− AngleUpdate (ω, θ);
nnew ←− Extend (nnear, θnew, v);
node list←− AddNode (nnew);
θ = θnew

end
Return: nnew, node list

Hence, the resultant CBF constraint for a single obstacle i
is determined by:

ςi(x, u) = βi

(
∂2z

∂p2x
v2 cos2 θ +

∂

∂px

(
∂z

∂py

)
v2 sin θ cos θ

+
∂

∂py

(
∂z

∂px

)
v2 cos θ sin θ +

∂2z

∂p2y
v2 sin2 θ

+

(
− ∂z

∂px
v sin θ +

∂z

∂py
v cos θ

)
u

+k1

(
∂z

∂px
v cos θ +

∂z

∂py
v sin θ

)
+ k0z

)
≥ 0 (18)

where k0, k1 are user-determined CBF coefficients in the
form of k1 = α2, k0 = α1α2. If there are N obstacles,
the CBF-QP controller can be derived:

min
u

||u− uref ||2 (19)

s.t ςi(x, u) ≥ 0 for i = 1, ..., Nobs

umin ≤ u ≤ umax

where uref is a reference angular velocity command.

D. Implementation of the CBF-RRT* Algorithm

Based on the CBF-QP, we formulate a steering procedure
in RRT* every time it samples a new point on the map.
Different from the steering method in the CBF-RRT* algo-
rithm presented in [18], our steering algorithm splits one
big step into four small steps, and each of their headings is
controlled by the angular velocity calculated through solving
the CBF-QP in (19). The structure of the steering method
is shown in Algorithm 1. Our proposed multi-step steering
algorithm requires two node lists to save path data: tree node
list (Ttree), that only saves the node after the tree has grown
one outer iteration in each loop; all node list (Tall), that
saves all four nodes where the tree grows one outer iteration
step, is used for tracking real motion trajectory. First, we
sample points in the map, and select nearest node in Ttree,
see Fig. 4a. Then we calculate the position where the robot
may go in the direction of the sample point for the first small
step and solve its CBF-QP, which generates a control ω and
may change the robot’s heading and walk to a new node, see
Fig. 4b. After that, we solve QP with the position along the

(a) (b) (c)

Fig. 4. The green lines represent the existing path or tree. Ttree only saves red nodes, and Tall saves all nodes in the tree. The blue
square is an obstacle. (a). Sample a point in a map and find the nearest node in Ttree in the tree. (b). The red dashed point is the position
that the robot plans to go. By solving CBF-QP in this position, a control input ω is generated and drives the robot in a new direction.
(c). Repeat the process until all four steps have grown. The red node will be saved in Ttree, and four new nodes will be saved in Tall.

new heading and repeat the same process until the tree has
grown all four steps, see Fig. 4c. All four newly generated
nodes would be saved in Tall, and the last of four nodes
would be saved in Ttree. By introducing this method, the
proposed algorithm can effectively avoid the situation that
CBFs become infeasible, and remain the robot safe.

The overall procedure of the proposed CBF-RRT* is
shown in Algorithm 2. After saving the nodes into Tall and
Ttree, ChooseParent and Rewrite methods are used to
change the nodes’ parents to optimize the path. In particular,
we use the simple collision-check function in these two
procedures to improve the computational efficiency of the
algorithm. The code is developed in Python3.

Algorithm 2: CBF-RRT*
Input: M,β, ninit, ngoal, Niter

{The map features, parameters of a barrier function,
initial position, goal position, max iterations}

Initialization: i = 0, Tall = {ninit},
Ttree = {ninit}, v = velocity

while i < Niter do
i←− i+ 1;
xs ←− Sampling (M);
nnear ←− Nearest (Ttree, xs);
θxs ←− Atan2 (xs, nnear);
nnew, node list←− CBFSteer (β, nnear, v, θxs);
Ttree ←− AddNode (nnew);
for each in node list do

Indnear ←− NearIndex (each, Tall);
each←− ChooseParent (Tall, Indnear);
Tall ←− AddNode (each);
Tall ←− Rewrite (Tall, each, Indnear);
if NearGoal (each) then

path←− FinalPath (Tall, each, ngoal);
end

end

IV. SIMULATIONS AND HARDWARE EXPERIMENTS

We evaluate the effectiveness of the proposed work
through several simulation and experimental tests. To start
with, we simulated generating barrier functions and a safe
path in an imagined environment with simple polygon shape

obstacles. Then, we construct a map of an actual lab room
using depth cameras and LiDAR of the Digit robot. The
proposed algorithm can effectively identify obstacles in the
middle of the room and surrounding desks and construct
appropriate barrier functions. The CBF-RRT* then generates
a safe path that enables the Digit robot to navigate between
two chairs randomly placed in the room1.

A. Simulation Results

In this test, we consider two imaginary environments with
Nobs = 1 and Nobs = 3, respectively. The obstacles and
their barrier functions are shown in Fig. 5a and Fig. 5c. The
time to construct barrier functions in each case is 0.64s and
1.84s. Before running the algorithm, we set the iteration
upper bound Niter = 120. In order to keep the robot safe,
we expand the obstacles with safety distance (ds = 0.2m).
We set CBF parameters k0 = 4, k1 = 1. The robot velocity
is 0.2m/s, and it starts at (0.9, 0.8)m and the goal is located
at (7.45, 6.8)m. The path traced by CBF-RRT* is shown in
Fig. 5b, and Fig. 5d. Due to the randomness of the algorithm,
we run it 15 times for each case and calculate the average
time cost and iteration for the algorithm to generate the first
trajectory. For Nobs = 1, its average time cost is 13.02s with
40.13 average iterations. For Nobs = 3, its average time cost
is 12.02s with 34.86 average iterations. The box-plot of these
two cases is shown in Fig. 8

B. Hardware Experiments with Digit

Digit has an integrated perception system that includes
three depth modules (Intel RealSense D430), one RGB-
Depth module (Intel RealSense D435), one color camera
(The Imaging Source DFM 27UP), and one LiDAR sensor
(Velodyne LiDAR Puck VLP-16). The robot can walk ro-
bustly with a maximum velocity of 0.5 m/s. The locomotion
can be controlled by either way-point or velocity commands.
In our experiment, we used two pelvis depth modules and the
LiDAR sensor to build the room map and used the way-point
command to control the robot. In our experiment, we used
two pelvis depth modules and the LiDAR sensor to build the
room map and used the way-point command to control the
robot to walk.

1Experiment recordings are shown in the following video: https://
youtu.be/r_hkuK5cMw4

https://youtu.be/r_hkuK5cMw4
https://youtu.be/r_hkuK5cMw4

(a) single obstacle (b) RRT tree and final path

(c) multiple obstacles (d) RRT tree and final path

Fig. 5. Simulated tests for polygon shape obstacles.

Fig. 6. The generation of barrier functions from real-world 2D
occupancy map.

In this test, we first generated an occupancy map of the
room from the point cloud data obtained from the depth cam-
eras and LiDAR. The Random Sample Consensus method
is used to segment point clouds to distinguish between
obstacles and free space. The resulting obstacle points are
projected onto a 2D plane, and the cells containing projected
points are considered occupied by obstacles. To improve the
efficiency of constructing barrier functions, we divided the
map into multiple regions and generated the barrier functions
for each region respectively. Fig. 6 shows the occupancy map
of the room and generated barrier functions of obstacles. The
time to construct these obstacles is 3.03s. We set the robot
starting at (6.5, 4.0)m and the goal located at (3.6, 3.0)m,
and run the algorithm 15 times. The average time cost is
14.26s with 32.03 average iterations. The box-plot of the
hardware test is shown in Fig. 8 In the path following phase,
we set Digit’s velocity to 0.1m/s, and send the way-point
in the path to Digit.Fig. 1 shows the snapshots of the robot
following the path and avoiding obstacles.

C. Analysis

One of the major focuses of this work is avoiding the
polynomial shape obstacles and generating a safety path

Fig. 7. Collision-free safe path generated by the proposed CBF-
RRT*.

Fig. 8. The time cost and iteration distribution of three tests with
15 times

on CBF-based RRT*. Through the above simulations and
experimental tests, we validated that the proposed algorithm
can construct appropriate CBFs for arbitrary shape obstacles
and generate a collision-free path effectively. From Fig. 8,
we find that the obstacle which relatively greatly blocks the
potential path to the goal will cause higher time cost and
iterations. In addition, the large number of CBFs would slow
the code’s computational speed, but it can still generate paths
in 15s with 40 iterations. Compared to other CBF-RRT/RRT*
methods, our method can consider efficiency while making
the path optimized and the resulting path shows its feasibility
for Digit in the real environment test. However, we also
notice the low Digit’s walking velocity in the path-following
phase, and incoherent following progress, which may be due
to the way-point command.

V. CONCLUSIONS

In this paper, we introduced a new framework of CBF-
RRT* with the ability to generate a collision-free path for
complex-shaped obstacles. We also demonstrated the feasi-
bility of the algorithm in real-world environments through
hardware experiments. However, our algorithm is still in-
sufficient in some cases, such as obstacles occupying too
little space to produce suitable CBFs; unable to express
surrounding obstacles with a single CBF, like Fig. 6. In
future work, we plan to explore improved algorithms in
graphics and machine learning to address these issues and
improve performance in practice. We will further improve the
computational efficiency of the algorithm so that it can also
be applied to safe real-time navigation. Moreover, the dif-
ferential drive model may limit the agility of bipedal robots.
Hence, we will explore more suitable model representations
for path planning that unlocks the potential of bipedal robots.

REFERENCES

[1] A. Gasparetto, P. Boscariol, A. Lanzutti, and R. Vidoni, “Path planning
and trajectory planning algorithms: A general overview,” Motion and
operation planning of robotic systems, pp. 3–27, 2015.

[2] N. Sleumer and N. Tschichold-Gürmann, “Exact cell decomposition
of arrangements used for path planning in robotics,” Technical Re-
port/ETH Zurich, Department of Computer Science, vol. 329, 1999.

[3] Y. Xue and J.-Q. Sun, “Solving the path planning problem in mobile
robotics with the multi-objective evolutionary algorithm,” Applied
Sciences, vol. 8, no. 9, p. 1425, 2018.

[4] J. Bruce and M. M. Veloso, “Real-time randomized path planning for
robot navigation,” in Robot soccer world cup. Springer, 2002, pp.
288–295.

[5] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The international journal of robotics research,
vol. 30, no. 7, pp. 846–894, 2011.

[6] A. Perez, R. Platt, G. Konidaris, L. Kaelbling, and T. Lozano-Perez,
“Lqr-rrt*: Optimal sampling-based motion planning with automatically
derived extension heuristics,” in 2012 IEEE International Conference
on Robotics and Automation. IEEE, 2012, pp. 2537–2542.

[7] G. Goretkin, A. Perez, R. Platt, and G. Konidaris, “Optimal sampling-
based planning for linear-quadratic kinodynamic systems,” in 2013
IEEE International Conference on Robotics and Automation. IEEE,
2013, pp. 2429–2436.

[8] T. Schouwenaars, J. How, and E. Feron, “Receding horizon path
planning with implicit safety guarantees,” in Proceedings of the 2004
American control conference, vol. 6. IEEE, 2004, pp. 5576–5581.

[9] J.-K. Huang, Y. Tan, D. Lee, V. R. Desaraju, and J. W. Grizzle,
“Informable Multi-Objective and Multi-Directional RRT* System for
Robot Path Planning,” arXiv preprint arXiv: Arxiv-2205.14853, 2022.

[10] W. Xiao, C. G. Cassandras, C. A. Belta, and D. Rus, “Control barrier
functions for systems with multiple control inputs,” in 2022 American
Control Conference (ACC), 2022, pp. 2221–2226.

[11] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs for safety critical systems,” IEEE
Transactions on Automatic Control, vol. 62, no. 8, pp. 3861–3876,
2016.

[12] A. D. Ames, J. W. Grizzle, and P. Tabuada, “Control barrier function
based quadratic programs with application to adaptive cruise control,”
in 53rd IEEE Conference on Decision and Control. IEEE, 2014, pp.
6271–6278.

[13] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath,
and P. Tabuada, “Control barrier functions: Theory and applications,”
in 2019 18th European control conference (ECC). IEEE, 2019, pp.
3420–3431.

[14] S. Teng, Y. Gong, J. W. Grizzle, and M. Ghaffari, “Toward safety-
aware informative motion planning for legged robots,” arXiv preprint
arXiv:2103.14252, 2021.

[15] S.-C. Hsu, X. Xu, and A. D. Ames, “Control barrier function based
quadratic programs with application to bipedal robotic walking,” in
2015 American Control Conference (ACC). IEEE, 2015, pp. 4542–
4548.

[16] G. Yang, B. Vang, Z. Serlin, C. Belta, and R. Tron, “Sampling-
based motion planning via control barrier functions,” in Proceedings
of the 2019 3rd International Conference on Automation, Control and
Robots, 2019, pp. 22–29.

[17] A. Manjunath and Q. Nguyen, “Safe and robust motion planning for
dynamic robotics via control barrier functions,” in 2021 60th IEEE
Conference on Decision and Control (CDC). IEEE, 2021, pp. 2122–
2128.

[18] A. Ahmad, C. Belta, and R. Tron, “Adaptive sampling-based motion
planning with control barrier functions,” in 2022 IEEE 61st Conference
on Decision and Control (CDC). IEEE, 2022, pp. 4513–4518.

[19] J. Liu, M. Li, J.-K. Huang, and J. W. Grizzle, “Realtime Safety
Control for Bipedal Robots to Avoid Multiple Obstacles via CLF-CBF
Constraints,” arXiv preprint arXiv:2301.01906, 2023.

[20] Q. Nguyen and K. Sreenath, “Exponential control barrier functions
for enforcing high relative-degree safety-critical constraints,” in 2016
American Control Conference (ACC). IEEE, 2016, pp. 322–328.

[21] W. Xiao and C. Belta, “Control barrier functions for systems with
high relative degree,” in 2019 IEEE 58th conference on decision and
control (CDC). IEEE, 2019, pp. 474–479.

[22] I. Noreen, A. Khan, and Z. Habib, “Optimal path planning using
rrt* based approaches: a survey and future directions,” International

Journal of Advanced Computer Science and Applications, vol. 7,
no. 11, 2016.

[23] D. Pregibon, “Logistic regression diagnostics,” The annals of statistics,
vol. 9, no. 4, pp. 705–724, 1981.

[24] J. Feng, H. Xu, S. Mannor, and S. Yan, “Robust logistic regression
and classification,” Advances in neural information processing systems,
vol. 27, 2014.

	Introduction
	Background
	Control Barrier Function (CBF)
	CBF-RRT/RRT*

	Safe Navigation via Multi-Step CBF-QP Steering with RRT*
	Bipedal Path Planning with Simplified Model
	Construct Polynomial Barrier Functions via Logistic Regression from 2D Obstacle Map
	CBF-QP Safe Steering Controller
	Implementation of the CBF-RRT* Algorithm

	Simulations and Hardware Experiments
	Simulation Results
	Hardware Experiments with Digit
	Analysis

	Conclusions
	References

