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Speed Regulation in 3D Robotic Walking through Motion Transitions 
between Human-Inspired Partial Hybrid Zero Dynamics 

Matthew 1. Powell, Ayonga Hereid, and Aaron D. Ames 

Abstract- This paper employs the Human-Inspired Control 
framework in the formal design, optimization and implemen
tation of controllers for 3D bipedal robotic walking. In this 
framework, controllers drive the robot to a low-dimensional 
representation, termed the partial hybrid zero dynamics, which 
is shaped by the parameters of the outputs describing human 
locomotion data. The main result of this paper is the use 
of partial hybrid zero dynamics in an optimization problem 
to compute physical constraints on the robot, without inte
grating the dynamics of the system, and while simultaneously 
yielding provably stable walking controllers for a 3D robot 
model. Controllers corresponding to various walking speeds 
are obtained through a second speed regulation optimization, 
and formal methods are presented which provide smooth 
transitions between walking speeds. These formal results are 
demonstrated through simulation and utilized to obtain 3D 
walking experimentally with the NAO robot. 

I. INTRODUCTION 

Three-dimensional bipedal robotic walking has been real
ized experimentally by numerous robotic systems through the 
use of various control schemes[l]. One of the most prevalent 
control approaches leverages the Zero Moment Point (ZMP) 
[2], [3], which is the control scheme included as the default 
walking for the NAOl robot platform used as a testbed 
for the controllers designed in this work. From a purely 
mechanical point of view, passive walkers [4] employ an 
excellent understanding of mechanics and mechanism design 
to experimentally achieve robotic walking down small slopes 
without the use of control. These ideas have been used to 
design passivity-based control laws in 2D [5], [6]. These 2D 
control laws have been extended to 3D through geometric 
reduction [7], [8], yet these methods have only recently been 
realized experimentally [9]. Therefore, there exists a gap 
between formal methods and experimental realization for 
three-dimensional robotic walking. The goal of this work is 
to begin the process of bridging this gap by providing formal 
results that provably result in robotic walking which can be 
realized in experimentation. 

The main idea behind this work is to approach 3D robotic 
walking through reductions based upon virtual models and 
constraints to create a low-dimensional representation of a 
bipedal robot that allows formal properties of the robot 
to be proven in a computationally tractable fashion. Low
dimensional representations have been studied before; see, 
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for example, [10]. Similar ideas have been considered in the 
past through Hybrid Zero Dynamics [11], [12] (which has 
recently been applied to 3D robots [7]) and the spring-loaded 
inverted pendulum [13], [14], or SLIP model. Differing 
from traditional approaches, the authors' previous results 
[15], [16] show that certain outputs of the human locomo
tion control system can be represented by the solution to 
an under-damped, second-order mass-spring-damper system, 
and employed to achieve walking for a 2D robot model of 
NAO. Novel to this paper is the application of the human
inspired control framework to a 3D robot model of NAO, 
with computation of constraints necessary to physically re
alize walking on the actual robot. 

This paper proposes a formal human-inspired optimization 

(HIO) which provably results in exponentially stable bipedal 
robotic walking and satisfies many of the physical constraints 
necessary to realize the walking experimentally. Specifically, 
the optimization minimizes an objective function which is the 
least-squares fit of the output functions of the robot to the 
human output data. Constraints are enforced which guarantee 
that the zero dynamics surface associated with the certain 
output functions is invariant through impact resulting in a 
partial hybrid zero dynamics [15]. These constraints, together 
with a specific choice of (linear) output functions, allow for 
a closed-form approximation of the solution to the dynamics 
of the robot over the course of one step, i.e., the behavior of 
the robot can be determined without integrating the dynamics 

of the system. This allows for the computation of physical 
constraints required for experimental implementation, such 
as the ZMP and friction, to be added to the HIO as constraints 
and computed in a feasible time-frame (as opposed to the 
time required to integrate the full dynamics of the system, 
which in the case of the robot model considered in this paper 
is 20-dimensional). 

In addition to walking at a constant speed, formal meth
ods are presented for obtaining walking at multiple speeds 
through speed regulation-in the form of another optimiza
tion which yields controllers corresponding to a partial 
hybrid zero dynamics surface for each walking speed. Motion 

Transitions are constructed to smoothly connect two partial 
hybrid zero dynamics surfaces. Specifically, parameters of 
the extended canonical walking function are obtained through 
closed form expressions which satisfy PHZD at the begin
ning and end of the step. These motion transitions allow 
for seamless regulation of the robot's walking speed, and 
as a result, provide the ability to quickly change the robot's 
walking speed, as presented in the final section on simulation 
and experimental results. 
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II. ROBOT MODEL 

The NAO robot can be modeled as a hybrid control 
system: 

Restrictions are imposed via control which render both feet 
flat throughout the gait; for non flat-foot models, more 
complex hybrid systems must be considered [7], [8]. The 
configuration space, QR, of the system is given in coordi
nates by: 

where, as illustrated in Figure 1, '-Psa, '-Psh, '-Pnsh, and 
'-Pnsa are the stance ankle, stance hip, nonstance hip 
and nonstance ankle roll an
gles, respectively, and Bsa, 
Bsk, Bsh, Bnsh, Bnsk, and 
Bnsa are the stance ankle, 

stance knee, stance hip, non
stance hip, nonstance knee 
and nonstance ankle pitch 
angles, respectively. Note 
that the configuration is the 
3D version of the com
monly employed seven-link 
biped model [17], [1]. With 
the mass, length and inertia 
properties of each link of the 

()s� 
() 

robot, the Lagrangian can Fig. 1: Angle conventions be computed which, through for NAO. 
the Euler-Lagrange equation 
(see [18]), yields the equations of motion which can be 
converted to a set of first order ordinary differential equations 
(ODEs) resulting in the affine control system (fR,gR): 

with UR <;;; IRlO and B : QR -+ IRlOXlO. For the choice 
of coordinates in this paper, B = ho. The domain specifies 
the allowable configuration of the system, determined by a 
unilateral constraint h R : QR -+ IR; for the biped considered 
in this paper, this function is the height of the non-stance 
foot. In particular, the domain and guard are given by: 

VR = {(q, q) E TQR: hR(q);::: o}. (2) 
SR = {(q, q) E TQR: hR(q) = 0 and dhR(q)q < O}, 

where dhR(q) is the Jacobian of hR at q. The reset map 
/:).R : SR -+ VR is given by: 

(3) 

where /:).q is the relabeling matrix which switches the stance 
and non-stance legs at impact (by appropriately changing the 
angles). Here, /:).q determines the change in velocity due to 
impact (see [19], [7] and [15]). 

III. HUMAN-INSPIRED CONTROLLER DESIGN 

In the authors' previous work [15], it was shown that 
certain outputs of human locomotion, computed from ex
perimental locomotion data, can each be represented by a 
function termed the canonical walking function (CWF): 

YH(t, o:) = e-a4t(O:I COS(0:2t) + 0:3 sin(0:2t)) + 0:5. (4) 

Motivated by the desire to obtain human-like, bipedal robotic 
locomotion, the goal is to construct a controller which drives 
outputs of the robot to outputs of the human. This goal is 
effected formally through a control law u : TQR -+ UR 
which guarantees that ya(q(t)) -+ yd(t) exponentially as 
t -+ 00, where ya : QR -+ IRIo is a vector of kinematics 

maps on the robot representing the human outputs and yd : 
IR -+ IRIO is a vector of canonical human functions. 

With the goal of controlling the robot's walking speed, 
define the relative degree 1 actual output as the velocity of 
the hip and define the desired velocity of the hip: 

where 6Phip(q) is the linearized position of the hip, given by 

6pt!ip(q) = Lc( -Bsa) + Lt( -Bsa - Bsk)' (6) 

Furthermore, define the linear (relative degree 2) actual hu
man outputs and desired outputs represented by the walking 
functions: 

6m;;sl(q) 
Bsk 
Bnsk 

yg,L(q) = B�r(q) , yg,L(t, o:) = 
'-Psa 
'-Psh 
'-Pnsh 

YH(t, O:nst) 
YH(t, O:sk) 
YH(t, O:nsk) 
Y H ( t, O:tor) 
YH(t, O:sa) 
YH(t, O:sh) 
YH(t, O:nsh) 

(7) 

where yg L : QR -+ IR7 are the actual linear outputs of the 
robot, and yg L : IR X IR35 -+ IR 7 are the desired functions . ' R for these hnear outputs, Btor(q) = Bsa + Bsk + Bsh, and 

R Lc 6mnsl(q) = -Bsa - Bsk - Bsh - Bnsh + 
L L 

Bnsk· (8) 
c + t 

The first four outputs of (7) were used to obtain walking in 
a 2D model of this system [16]; the three additional outputs 
'-Psa, '-Psh, '-Pnsh corresponding to the roll angles are novel to 
this work. Due to the linear form of the outputs considered, 
they can be written as: 

yg,L(q) = H q (9) 

for H E IR7x8 with full row rank (where, for example, the 
top row of H is obtained by taking the Jacobian of (8) with 
respect to the first 8 angles of the system). To enforce a flat 
non-stance foot and complete the set of controller outputs, 
two nonlinear, relative degree two outputs are needed: 

a () [ 1/!f: ] d (t ) [ 1/!�(t, O:>j;x) ] (10) Y2,N q = 1/!: ' Y2,N , 0: = 1/!�(t, O:>j;y) 
, 
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where 'lj;{; and 'lj;: represent the roll and pitch angles of 
the non-stance foot frame with respect to the ground frame. 
Grouping the linear and nonlinear relative degree two outputs 
results in: 

Ya(q) = [ Y'2,L(q) ] yd(t a) = [ Y�,L(t, a) ] . (11) 2 Y'2,N(q) ' 2 , Y�,N(t, a) 
where the parameters of all of the outputs are combined to 
yield a single vector a E ]R46 given by: 

The goal is for the outputs of the robot to agree with the 
outputs of the human, motivating the final form of the outputs 
to be used in feedback linearization: 

Y1(q,q,a) = y�(q,q) - Vhip, (12) 

Y2(q,a) = Y'2(q) - Y�(T(q),a), (13) 
IipR (q)_lipR (q+) where T( q) = h.p 

. 
h.p is a state-based param-Villp 

eterization of time with JPt:ip (q+) the linearized position 
of the hip of the robot at the beginning of a step. This 
parameterization is important as it allows for control over 
walking speed through the parameter Vhip. These outputs can 
be used to define a human-inspired controller: 

ua,€(q, q) = A(q, q)-l ([ L}Ry� (q, q) 
] (14) 

+ [ LJRY1(q,q). ] + [ C�l(q,q) ] ), 
2cLfRY2(q,q) c Y2(q) 

with control gain c and decoupling matrix A given by 

A(q,q) = [ LgRY1(q,q,c:) ] (15) LgRLJRY2(q, q, a) 
and it follows that for a control gain c > 0, the control 
law ua,€ : TQR X ]R46 X ]R+ --+ UR renders the output 
exponentially stable [20]. 

For the hybrid control system yt''(?R, the human-inspired 
control law is applied to obtain the hybrid system 

(16) 

with f[}€(q, q) = fR(q, q) + gR(q, q)ua,€(q, q). The end 
result of the modeling process is a hybrid system J�� that 
depends on the parameters of the human inspired control a 
and c. 
Hybrid Zero Dynamics For the continuous dynamics of 
the hybrid system J(',(R ) , the controller renders the full zero a,€ 
dynamics surface 

FZa = {(q,q) E TQR: Y1(q,a) = O,Y2(q,q,a) = 09, 
L JR Y2 (q, q, a) = 09} , (17) 

exponentially stable (where On is a vector of n zeros). In 
this work, hybrid invariance is enforced only for the relative 
degree 2 outputs. The corresponding surface is referred to as 

Since the only output that is not included in the partial 
zero dynamics surface is the output that forces the forward 
hip velocity to be constant, enforcing partial hybrid zero 
dynamics means, in some respect, that the velocity of the 
hip is allowed to compensate for the shocks in the system 
due to impact. 

IV. HUMAN-INSPIRED CONTROLLER OPTIMIZATION 

This section presents the main result of this paper: an op
timization problem which yields parameters for the human
inspired controller, ua,€, that minimize a human data-based 
cost function [21] while simultaneously yielding robotic 
walking in simulation and satisfying physical modeling con
straints of the actual robot. A novel method is presented 
for computing these constraints in closed form (rather than 
explicitly integrating the dynamics) through the interplay 
between full and partial hybrid zero dynamics. 
Optimization Cost. The cost of the optimization is the least 
squares fit of the sagittal plane outputs to the corresponding 
mean human data. The mean human data consist of discrete 
times, tH[k], and discrete values for the output functions: 
Jph{p[k], Jm�sdk], e�[k], e�sdk], and et;,..[k] where here 
k E {l, ... , K} c N with K the number of data points. 
Represent the mean human output data by yf [k] and the 
canonical walking functions by yf(t, ai) for i E Output = 
{hip,msl,sk,nsk,tor}; for example, Y�sdk] = Jm�sdk] 
and y'/'nsl(t,amst) = Jm�sl(t,ansl). With these elements 
defined, the human data based cost can be written 

K 

CostHD(a) = L L (yf[k]- yf(tH[k],ai))2, 
k=l iEOutput 

(19) 

which is simply the sum of squared residuals. 
Partial Hybrid Zero Dynamics Constraints Following 
from [15], [16], to compute the constraints needed to ensure 
partial hybrid zero dynamics, the outputs and guard functions 
are used to explicitly solve for the configuration of the system 
tJ(a) E QR on the guard (hR(tJ(a)) = 0) in terms of the 
parameters a. In particular, let 

where 6.q is the relabeling matrix (3). Note that multiple 
solutions to tJ(a) exist because Y�,N(6.qq) and hR(q) are 
nonlinear functions of all joint angles; however, restrictions 
are placed on tJ( a) such that only one solution corresponds 
to a valid configuration. Using tJ( a) allows for the explicit 
solution of a point (19 (a), J (a)) E FZa n SR. In particular, 
let 

(21) 

the partial zero dynamics surface (PHZD): and define 

PZa = {(q, q) E TQR : Y2(q, a) = 09, Y2(q, q, a) = 09} . 
(18) (22) 
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where Y is invertible because of the choice of outputs. Uti
lizing these constructions, the constraints needed for partial 
hybrid zero dynamics can be written: 

Y2(19(a)) = 09, (C1) 
dY2(�q19(a))�q(19(a))0(a) = 09, (C2) 
dhR(19(a))0(a) < O. (C3) 

Computing approximate solutions: qe(t, a) and ({(t, a) 
This section utilizes the fact that the human outputs were 
specifically chosen to be linear in order to explicitly construct 
the partial hybrid zero dynamics. Because of the specific 
choice of Y'2,L' the following representation of the partial 
zero dynamic coordinates is employed: 

Jpr!ip(q) =: cq, (23) 
a( . ) J.R ( .) . Yl q,q = Phip q,q =: cq. 

where c E IR1 X S is obtained from (6). This motivates the 
following time-based approximation of 6 and 6 (utilizing 
the solution to the inverse kinematics): 

�Ht) .- Vhipt + Jpr!ip(�q19(a)), (24) 
��(t) .- Vhip' 

These time-based approximations can be used in the partial 
zero dynamics surface to obtain an approximation of the 
solution for the full-order system by picking the coordinates 

Y'2,L(q) = H q, 
LfRY'2,L(q, q) = H q, 

with H as in (9), and defining 

w(6, a) 

6 
yg,L(6, a) 

1 
8yg.L (6 ,a) 

86 

(25) 

(26) 

(27) 

yields estimates of the first eight angles and corresponding 
velocities of the system: 

qLs(t, a) 
q�:s(t, a) 

<I>(�Ht), a), 
W(�Ht), a)��(t). 

(28) 
(29) 

The final four states of the system, (q9:10' q9:1O) 
(B;'sa, 'P;'sa, e;'sa, CP;'sa) T, are obtained through inverse kine
matics with the assumption that the non-stance foot is parallel 
to the ground throughout the step. 
Model Constraints Standard methods [7] are used to 
compute the ground contact forces and torques acting on 
h ·  f" F (Ffx Ffy Ffz Fmx Fmy Fmz) t e stance oot. st = st , st, st, st , st , st , 

where the first three components are the forces and the last 
three components are the torques acting on the stance foot. 
To prevent rotation about an edge, the following constraints 
on the ground reaction moment must hold [22]: 

_ wf Ffz < Fmx < wf Ffz 2 st st 2 st 
I Ffz Fmy I Ffz - h st < st < t st, 

(30) 

(31) 

where W f is the width of the foot, It is the length of 
the toe and lh is the length of the heel. This condition 
is known as the Zero Moment Point condition [2], [3]. 
Furthermore, to prevent the stance foot from slipping, the 
following constraint must hold: 

(Ffx)2 + (FfY)2 < IIFfz st st fA' st , (32) 

where JL is the coefficient of static friction for the contact 
between NAO's foot and the ground. Equations (30)-(32) 
can be rearranged and stated in terms of inequalities of 
the form Ci (u) < 0 for i E {I, ... , 5}. Moreover, using 
the approximation to the solution, (qe(t, a), qe(t, a)), an 
approximation the torque is computed at each time, t, over 
the course of a step: 

U�,E(t) :=Ua,E(qe(t, a), qe(t, a)). (33) 

Therefore, the ZMP and friction constraints on the stance 
foot can be stated as the constraint: 

max max Ci(U� E(t)) < 0, 
iE{1, ... ,5} tE[O,T(t9(a))] , (C4) 

where T ( 19( a)) provides an approximation of the duration of 
a step (and will converge to the actual step time as c -7 (0). 

The non stance foot is kept parallel to the ground via 
control, through the following constraints on a: 

(C5) 

These constraints on a'lj;x and a'lj;y reduce the size of the 
optimization search space to IR36. 
Optimization Problem Statement. The goal of human

inspired PHZD optimization is to find parameters a* which 
solve the following constrained optimization problem: 

a* = argmin CostHD(a) 
aEIR46 

s.t. (C1) - (C5) 

(HIO) 

with CostHD the cost given in (19). The main result of 
this paper is established by combining the constructions and 
results of this section with Theorem 2 of [16]. It particular, 
it establishes that solving this optimization problem results 
in a exponentially stable periodic orbit for -Yt;.1J: E (see [16] 
for a formal definition of solutions, and the corresponding 
definitions of periodic solutions and exponentially stable 
periodic orbits). Furthermore, physically realistic robotic 
walking can be ensured without integrating the dynamics. 

V. WALKING SPEED REGULATION 

The solution, a*, of the optimization problem (HIO) 
corresponds to a partial zero dynamics surface, PZ�, and 
specifies controller outputs for walking at constant speed 
Vhip' However, as robotic locomotion is not always per
formed at a constant speed, controllers which provide the 
ability to smoothly transition between slow and fast walking 
are essential for functional robot operation. Here, a novel 
method for transitioning between these different walking 
speeds is presented; specifically, through the use of the 
extended canonical walking function, we will connect the 
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Fig. 2: Optimization for 80 values of Vhip and comparison to human data. The fitted outputs represents the canonical walking 
function fit to the mean human model. 

PHZD surface corresponding to walking at two different 
speeds. This will allow for a smooth transition between these 
two walking speeds-one that respects the invariance of the 
PHZD surface associated to the walking at each speed. 
Speed Regulation Overview. The first step in the procedure 
is to obtain optimal walking controller parameters by solving 
(HIO). By definition, these parameters, a*, correspond to a 
local minima in CostHD and satisfy the constraints (Cl)
(C5). The remaining steps in the process, therefore, can 
be viewed as perturbing and fixing Vhip and then solving 
an optimization problem which effectively searches in a 
neighborhood of a*, subject to the same constraints (C 1)
(C5). Choosing a small perturbation on vhip and using a* 
as the seed to the speed regulation optimization results in 
rapid convergence. The process is iterated using the solution 
to one optimization as the seed to the next until controllers 
for the desired maximum or minimum Vhip are obtained. 
Walking Speed Specification. Starting with V�ip = Vhip' 
discrete walking speeds are specified via the following con
straint 

l±1 I ± 5: vhip = vhip u, (C6) 

with I E z:; and <5 the perturbation magnitude; where <5 
is chosen based on velocity resolution and convergence 
requirements (smaller <5 leads to faster convergence in the 
following optimization). 
Speed Regulation Cost. The cost function corresponding to 
each speed regulation step I is as follows: 

CostSR (a, a/) = L iT II yf (t, ai) - yf (t, ai) 11
2 dt. 

iEOutput 0 
(34) 

This is the integral norm of the difference between the 
current controller outputs, Yd(t, a), and the controller outputs 
computed via the solution to the previous speed regulation 
step, Yd(t, a/). As the initial seed to the speed regulation 
procedure, aO = a*, is the solution to the human-inspired 

PHZD optimization. This objective function serves to both 
facilitate fast convergence in the following optimization (a* 

satisfies (Cl)-(C5» and maintain the human-like form of 
the resulting walking controller outputs (a* corresponds to 
a local minima in CostHD)' 
Speed Regulation Optimization. The goal of the speed 

regulation optimization is to find parameters al+! that solve 
the following constrained optimization problem: 

al+1 = argmin CostsR(a, a/) (SRO) 
aEIR46 

s.t. (C 1)-(C6) 

with CostSR the cost given in (34). The optimization (SRO) 
can be iteratively solved to obtain a set of (v{;{pAX -vt{: N) / <5 
walking control parameters. 
Extended Canonical Walking Function. It was found 
in [23] that to describe more complex walking motions, 
such as going up and down stairs, the canonical walking 
function must be augmented to account for the role that the 
environment plays on this system. Specifically, the extended 

canonical walking function (ECWF) is given by the time 
solution to a linear mass-spring-damper system subject to 
sinusoidal excitation: 

y'1(t, af) =e-af,4t (af,l cos( af,2t) + af,3 sine af,2t)) 
+ a�,5 cos(a�,6t) + lI;(a) sin(a�,6t) + a�,7' 

(35) 

where 11; ( an = (2a� 4ai 5ai 6) / (( ai 4)2 + (ai 2)2 - (ai 6)2) 
and i E Outputs. 'Note that due 'to the li�earity of' the 
parameters ai,l' ai,3' ai,5 and ai,7 in (35), we can write: 

y'1(t, af) = Yi}(t, af 2, af 4, af 6) , , , [ 
a�,l 

1 
a�,3 (36) a�,5 
a�,7 

where Yi}(t, an E jRlx4 only depends on the parameters 
ai 2' ai 4' ai 6' The CWF can naturally be written as a 
sp�cial �ase �f the ECWF by, given parameters ai E jR5 
for the CWF (4), defining &e(ai) := (ai, 0, 0). Through 
this embedding, we can therefore consider the same human
inspired controller that was considered for the CWF by 
replacing the CWF with the ECWF in (7). Similarly, we can 

4807 
Authorized licensed use limited to: The Ohio State University. Downloaded on October 20,2023 at 17:14:40 UTC from IEEE Xplore.  Restrictions apply. 



1.2 
<J) 1 ;:::l � 08 
'506 
.fr 0.4 
;:::l 

00.2 
0 
0 0.5 1.5 

�4 
en ----

"0 oj -=,,2 
,Q 
'G 0 0 

� 
'-< ..:g-2 
;::i b.O 
c: 

-0:: -1 

�-4 
;:; 

2 
1.5 

0.5 
0 

-0.5 
-1 

-1.5 
-2 

-0.5 0 0.5 1.5 -0.2 -0.1 0 0.1 0.2 

2 

�6���--��--�--�� 
2 4 6 8 1 0 � -1 -0.5 0 0.5 1 1.5 2 -0 .2 -0.1 0 0.1 o 0.2 

Time(s) Angle (rad) Angle (rad) 
-YH,l -YH,2 -YH,3 -YH,4 - YH,5 --Bsa -+- fisk ---Bsh --tpsa ---tpsh ---01 ---02 ---03 ---04 ---05 ......... Onsa ........ Onsk -T-Onsh ......... tpnsa -T-tpnsh 

Fig. 3: Simulation results for steady-state walking starting from a perturbed fixed point (top) and speed regulation (bottom), 
showing controller outputs (left), phase portraits for pitch angles (middle) and roll angles (right). 

consider the PHZD surface for the ECWF which we denote 
by: PZ",e. Finally, we note that since 6 is just the linearized 
position of the hip, which is used to parameterize time, we 
can write the parameterized ECWF as y'H(6, ��, Vhip, an := 

Y'H(6��� ,an, which is now viewed as a function of 6. VhlP 
Motion Transitions. The advantage to the ECWF is that, 
given any two PHZD surfaces these surfaces can be con
nected with the ECWF to ensure that partial hybrid zero 
dynamics is maintained, i.e., the ECWF can "glue" together 
any two PHZD surfaces; this is not possible with the CWF 
as there are not enough parameters present. To see this, 
let al-1 and al be the parameters of the CWF associated 
with walking at two different successive speeds. Associated 
with these parameters are the �osition of the hip at the 
beginning and end of a step: �l,l = bphip(�qtJ(al)) and 
�e = bphip(tJ(al)). To construct a surface connecting the 
the PHZD surface associated with these two walking speeds, 
consider the ECWF at the beginning of a step associated to 
al-1 and the end of a step associated with al: 

for i E Outputs. 
The goal is to find a parameters, ai, for the ECWF such 

that Le (a�-l) and Le (aD can be replaced by aT in (37)-(40). 
To achieve the goal of determining the parameters aT, we 

I . 'f" h ' k' e l e l d t IS easy to ven y t at pIC mg ai 2 = ai 2' ai 4 = ai 4 an 
ai,6 > 0 results in Y being nonsin'gular. Theref'ore, th� final 
four parameters of aT can be determined by picking: 

The end result are parameters aT for i E Outputs. The end 
result of solving for ae in this manner is that any solution 
starting in PZ",I-l which transitions through PZ",e for one 
step will begin the subsequent step on PZ",I. In other words, 
we will have connected the PHZD surfaces PZ",I-l and 
PZ",1 through PZ",c, and will therefore the control laws 
developed will be valid even as the robot transitions between 
different speeds. This will be verified through simulation and 
experimentally in the next section. 

VI. SIMULATION AND EXPERIMENTAL RESULTS 

This section presents both simulation and experimental re
sults for walking at a constant speed and transitions between 
multiple walking speeds. 
Simulation Results. A simulation of the hybrid system, 
�Ff:,€, modeling NAO is performed in which the robot starts 
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on the point on the guard, (19(a*),79(a*)) and is controlled 
via the human-inspired control law, Un* ,I': with parameters 
a* obtained through optimization (HIO) and c = 10 as 
the control gain. The resulting periodic orbit for the pitch 
angles and roll angles of the system are given in Figure 3. 
Selected frames from one step of the simulated walking are 
shown in Figure 4. Furthermore, the fact that the robot can 
be started from rest, (q(O), q(O)) = (0,0), and converge 
to the periodic orbit implies robustness of the walking (in 
simulation). Figure 4 also shows the angles of the biped in 
simulation and in the experiment described later. 

To demonstrate speed regulation, a simulation was con
ducted using a series of controller parameters al determined 
from solving the optimization problem described above for 
various different choices of Vhip between 0.14 m/s and 0.32 
m/s. Transitions increased speed by 0.03 m/s every four 

steps. As shown in Figure 3, the actual outputs converge to 
the desired controller outputs on each step. 
Experimental Results. The human inspired control approach 
is implemented experimentally on the actual NAO robot via 
pseudo-feedback control which uses the NAO's built-in PID 
controller is to track the q( t) trajectories from simulation. 
Hybrid domain switches are determined via data from the 
force sensors in the feet-filtering of this data to effect 
"debouncing" induces lag in the experimental system as 
compared to simulation. The simulation and experiment data 
are compared against one another in Figure 4, which shows 
that the experimental angles agree closely with the simulated 
angles (with minor discrepancies in esb etor and '-Psa, which 
are a result of the open-loop controller). Snapshots of the 
experimental walking are given with the simulated gait in 
Figure 4. 

Speed regulation is also implemented experimentally using 
a series of controller parameters al determined from solv
ing the optimization problem described above for various 
different choices of Vhip between 0.14 m/s and 0.32 m/s. 
Transitions increased speed by 0.03 m/s every four steps. 
Without Motion Transitions, the max achievable speed is 
0.23 mis, however, with Motion Transitions computed via 
the extended canonical function (35), a max speed of 0.32 
m/s is obtained (nearly a 50% increase in top speed!). 

A video of the experimental walking achieve on NAO is 
available online [24]. 

VII. CONCLUDING REMARKS 

This paper presented the first steps toward defining an 
optimization problem that provably results in stable robotic 
walking in 3D through the use of human output data and 
controllers inspired by these data. The fundamental contri
bution is in the form of constraints that ensure physically 
realizable walking and can be enforced through solutions 
obtained through the low-dimensional representation given 
by partial hybrid zero dynamics. Speed regulation enables 
the rapid development of walking for a variety of speeds, 
and with Motion Transitions, yields experimentally realized 
3D walking with NAO. 
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Fig. 4: Comparison of the snapshots of the actual (top row) and simulated (second row) walking gaits over one step, and 
experiment and simulation for steady-state walking (left two columns) and speed regulation (right two columns): XS are 
from simulation, X Ed are desired values from experiment, and X Ea are actual values from experiment. 
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